Schneider DF, Cherney Stafford LM, Brys N, Greenberg CC, Balentine CJ, Elfenbein DM, et al. Gauging the Extent of Thyroidectomy for Indeterminate Thyroid Nodules: An Oncologic Perspective. Endocr Pract. 2017;23(4):442-50.
Article PubMed PubMed Central Google Scholar
Elsers DA, Hussein MRA, Osman MH, Mohamed GA, Hosny G. Challenge in the Pathological Diagnosis of the Follicular- Patterned Thyroid Lesions. Asian Pac J Cancer Prev. 2021;22(10):3365-76.
Article CAS PubMed PubMed Central Google Scholar
Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33(1):27-63.
Kim C, Agarwal S, Bychkov A, Hang JF, Harahap AS, Hirokawa M, et al. Differentiating BRAF V600E- and RAS-like alterations in encapsulated follicular patterned tumors through histologic features: a validation study. Virchows Arch. 2024.
Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016;2(8):1023-9.
Article PubMed PubMed Central Google Scholar
Lloyd RV, Asa SL, LiVolsi VA, Sadow PM, Tischler AS, Ghossein RA, et al. The evolving diagnosis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Hum Pathol. 2018;74:1-4.
Li S, Counter CM. An ultra-sensitive method to detect mutations in human RAS templates. Small GTPases. 2022;13(1):287-95.
Article CAS PubMed PubMed Central Google Scholar
Alzumaili B, Sadow PM. Update on Molecular Diagnostics in Thyroid Pathology: A Review. Genes (Basel). 2023;14(7).
Massi D, Simi L, Sensi E, Baroni G, Xue G, Scatena C, et al. Immunohistochemistry is highly sensitive and specific for the detection of NRASQ61R mutation in melanoma. Mod Pathol. 2015;28(4):487-97.
Article CAS PubMed Google Scholar
Turchini J, Andrici J, Sioson L, Clarkson A, Watson N, Toon CW, et al. NRASQ61R Mutation-specific Immunohistochemistry is Highly Specific for Either NRASQ61R or KRASQ61R Mutation in Colorectal Carcinoma. Appl Immunohistochem Mol Morphol. 2017;25(7):475-80.
Article CAS PubMed Google Scholar
Oishi N, Kondo T, Vuong HG, Nakazawa T, Mochizuki K, Kasai K, et al. Immunohistochemical detection of NRAS(Q61R) protein in follicular-patterned thyroid tumors. Hum Pathol. 2016;53:51-7.
Article CAS PubMed Google Scholar
Crescenzi A, Fulciniti F, Bongiovanni M, Giovanella L, Trimboli P. Detecting N-RAS Q61R Mutated Thyroid Neoplasias by Immunohistochemistry. Endocr Pathol. 2017;28(1):71-4.
Article CAS PubMed Google Scholar
Jhuang JY, Yuan CT, Lin YL, Cheng ML, Liau JY, Tsai JH. NRASQ61R immunohistochemistry detects both NRASQ61R and KRASQ61R mutations in colorectal cancer. Pathology. 2017;49(4):387-90.
Article CAS PubMed Google Scholar
Pareja F, Toss MS, Geyer FC, da Silva EM, Vahdatinia M, Sebastiao APM, et al. Immunohistochemical assessment of HRAS Q61R mutations in breast adenomyoepitheliomas. Histopathology. 2020;76(6):865-74.
Article PubMed PubMed Central Google Scholar
Saliba M, Katabi N, Dogan S, Xu B, Ghossein RA. NRAS Q61R immunohistochemical staining in thyroid pathology: sensitivity, specificity and utility. Histopathology. 2021;79(4):650-60.
Article PubMed PubMed Central Google Scholar
Nakaguro M, Tanigawa M, Hirai H, Yamamoto Y, Urano M, Takahashi RH, et al. The Diagnostic Utility of RAS Q61R Mutation-specific Immunohistochemistry in Epithelial-Myoepithelial Carcinoma. Am J Surg Pathol. 2021;45(7):885-94.
Article PubMed PubMed Central Google Scholar
Chu YH, Sadow PM. Kinase fusion-related thyroid carcinomas: distinct pathologic entities with evolving diagnostic implications. Diagn Histopathol (Oxf). 2021;27(6):252-62.
Article PubMed PubMed Central Google Scholar
Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-6.
Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2023;33(9):1039-44.
Su Z, Dias-Santagata D, Duke M, Hutchinson K, Lin YL, Borger DR, et al. A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J Mol Diagn. 2011;13(1):74-84.
Article CAS PubMed PubMed Central Google Scholar
Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852-60.
Article CAS PubMed PubMed Central Google Scholar
Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D, Lynch KD, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20(12):1479-84.
Article CAS PubMed Google Scholar
Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23.
Article CAS PubMed PubMed Central Google Scholar
Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol. 2017;2017.
Wood DE, White JR, Georgiadis A, Van Emburgh B, Parpart-Li S, Mitchell J, et al. A machine learning approach for somatic mutation discovery. Sci Transl Med. 2018;10(457).
Hu MI, Waguespack SG, Dosiou C, Ladenson PW, Livhits MJ, Wirth LJ, et al. Afirma Genomic Sequencing Classifier and Xpression Atlas Molecular Findings in Consecutive Bethesda III-VI Thyroid Nodules. J Clin Endocrinol Metab. 2021;106(8):2198-207.
Article PubMed PubMed Central Google Scholar
Sheffield BS, Beharry A, Diep J, Perdrizet K, Iafolla MAJ, Raskin W, et al. Point of Care Molecular Testing: Community-Based Rapid Next-Generation Sequencing to Support Cancer Care. Curr Oncol. 2022;29(3):1326-34.
Article PubMed PubMed Central Google Scholar
Keefer LA, White JR, Wood DE, Gerding KMR, Valkenburg KC, Riley D, et al. Automated next-generation profiling of genomic alterations in human cancers. Nat Commun. 2022;13(1):2830.
Article CAS PubMed PubMed Central Google Scholar
Johnson DN, Sadow PM. Exploration of BRAFV600E as a diagnostic adjuvant in the non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Hum Pathol. 2018;82:32-8.
Article CAS PubMed Google Scholar
Uguen A, Talagas M, Costa S, Samaison L, Paule L, Alavi Z, et al. NRAS (Q61R), BRAF (V600E) immunohistochemistry: a concomitant tool for mutation screening in melanomas. Diagn Pathol. 2015;10:121.
Article PubMed PubMed Central Google Scholar
Sukswai N, Khoury JD. Immunohistochemistry Innovations for Diagnosis and Tissue-Based Biomarker Detection. Curr Hematol Malig Rep. 2019;14(5):368-75.
Xu B, Serrette R, Tuttle RM, Alzumaili B, Ganly I, Katabi N, et al. How Many Papillae in Conventional Papillary Carcinoma? A Clinical Evidence-Based Pathology Study of 235 Unifocal Encapsulated Papillary Thyroid Carcinomas, with Emphasis on the Diagnosis of Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid. 2019;29(12):1792-803.
Article CAS PubMed PubMed Central Google Scholar
Kim M, Jeon S, Jung CK. Preoperative Risk Stratification of Follicular-patterned Thyroid Lesions on Core Needle Biopsy by Histologic Subtyping and RAS Variant-specific Immunohistochemistry. Endocr Pathol. 2023;34(2):247-56.
Comments (0)