Inexpensive fabrication of radiation shielding and hydrophobic hafnium dioxide thin films for electronic, photonic and optoelectronic applications

X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15(4), 383–396 (2016). https://doi.org/10.1038/nmat4599

Article  ADS  Google Scholar 

J.W. Park, B.H. Kang, H.J. Kim, A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 30(20), 1904632 (2020). https://doi.org/10.1002/adfm.201904632

Article  Google Scholar 

Y. Yang, Z. Xu, T. Qiu et al., High k PVP titanium dioxide composite dielectric with low leakage current for thin film transistor. Org. Electron. 101, 106413 (2022). https://doi.org/10.1016/j.orgel.2021.106413

Article  Google Scholar 

J. Liu, J. Li, J. Wu, J. Sun, Structure and dielectric property of high-k ZrO2 films grown by atomic layer deposition using Tetrakis(Dimethylamido)Zirconium and ozone. Nanoscale Res. Lett. 14(1), 154 (2019). https://doi.org/10.1186/s11671-019-2989-8

Article  ADS  Google Scholar 

P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Structural and electrical characteristics of RF-sputtered HfO2 high-k based MOS capacitors. Solid State Electron. 62(1), 44–47 (2011). https://doi.org/10.1016/j.sse.2011.04.009

Article  ADS  Google Scholar 

D. Sabhya, M.S. Kekuda, D. Rao, K. Rao, Effect of number of sol-layer on structural, optical, morphological, and compositional properties of HfO2 films. Phys. B 675, 415605 (2024). https://doi.org/10.1016/j.physb.2023.415605

Article  Google Scholar 

S. Kirbach, K. Kühnel, W. Weinreich, Piezoelectric hafnium oxide thin films for energy-harvesting applications IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 2018; 2018:1–4. https://doi.org/10.1109/NANO.2018.8626275

B. Zhang, X. Lou, K. Zheng et al., Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics. Ceram. Int. 47(1), 1101–1108 (2021). https://doi.org/10.1016/j.ceramint.2020.08.226

Article  Google Scholar 

S. Kumar, C. Rath, Oxygen vacancy mediated stabilization of cubic phase at room temperature and resistive switching effect in Sm- and Dy-doped HfO2 thin film. Phys. Status Solidi (a). 217(1), 1900756 (2020). https://doi.org/10.1002/pssa.201900756

Article  ADS  Google Scholar 

M. Bi, J. Zhu, Y. Luo et al., Effect of deposition temperature on the surface, structural, and mechanical properties of HfO2 using chemical vapor deposition (CVD). Coatings. 12(11), 1731 (2022). https://doi.org/10.3390/coatings12111731

Article  Google Scholar 

K. Bae, H. Jang, Y. Oh, I. Lee, S. Lee, Effects of HfO2 addition on the plasma resistance of Y2O3 thin films deposited by e-beam PVD. Appl. Surf. Sci. 640, 158359 (2023). https://doi.org/10.1016/j.apsusc.2023.158359

Article  Google Scholar 

S.B. Khan, Z. Zhang, S.L. Lee, Annealing influence on optical performance of HfO2 thin films. J. Alloys Compd. 816, 152552 (2020). https://doi.org/10.1016/j.jallcom.2019.152552

Article  Google Scholar 

K.M. Kim, J.S. Jang, S.G. Yoon, J.Y. Yun, N.K. Chung, Structural, optical and electrical properties of HfO2 thin films deposited at low-temperature using plasma-enhanced atomic layer deposition. Mater. (Basel). 13(9), 2008 (2020). https://doi.org/10.3390/ma13092008

Article  ADS  Google Scholar 

R. Lo Nigro, E. Schilirò, G. Mannino, Di S. Franco, F. Roccaforte, Comparison between thermal and plasma enhanced atomic layer deposition processes for the growth of HfO2 dielectric layers. J. Cryst. Growth. 539, 125624 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125624

Article  Google Scholar 

S. Matsumoto, Y. Kaneda, A. Ito, Highly self-oriented growth of (020) and (002) monoclinic HfO2 thick films using laser chemical vapor deposition. Ceram. Int. 46(2), 1810–1815 (2020). https://doi.org/10.1016/j.ceramint.2019.09.156

Article  Google Scholar 

I.A. Cordero-Martínez, R. Martínez-Martínez, G. Juárez-López et al., White luminescent emissions from HfO2 and HfO2:Al3 + layers deposited by ultrasonic spray pyrolysis technique. Opt. Mater. 141, 113905 (2023). https://doi.org/10.1016/j.optmat.2023.113905

Article  Google Scholar 

O. Pakma, S. Kaval, İ.A. Kariper, Ag-doped HfO2 thin films via sol-gel dip coating method. Opt. Quant. Electron. 51(10), 342 (2019). https://doi.org/10.1007/s11082-019-2055-x

Article  Google Scholar 

E. Mańkowska, M. Mazur, M. Kalisz, M. Grobelny, J. Domaradzki, D. Wojcieszak, Characterization of structural, optical, corrosion, and mechanical properties of HfO2 thin films deposited using pulsed DC Magnetron sputtering. Mater. (Basel). 16(14), 5005 (2023). https://doi.org/10.3390/ma16145005

Article  ADS  Google Scholar 

T. Dehury, S. Kumar, A.S. Kumar Sinha, M. Gupta, C. Rath, Thickness dependent phase transformation and resistive switching performance of HfO2 thin films. Mater. Chem. Phys. 315, 129035 (2024). https://doi.org/10.1016/j.matchemphys.2024.129035

Article  Google Scholar 

R.A. Salinas Domínguez, A. Orduña-Díaz, S. Cerón, M.A. Dominguez, Analysis and study of characteristic FTIR absorption peaks in hafnium oxide thin films deposited at low-temperature. Trans. Electr. Electron. Mater. 21(1), 68–73 (2020). https://doi.org/10.1007/s42341-019-00160-4

Article  Google Scholar 

J.D. Araiza, R. Gago, O. Sánchez, Surface morphology and optical properties of hafnium oxide thin films produced by Magnetron Sputtering. Materials. 16(15), 5331 (2022). https://doi.org/10.3390/ma16155331

Article  ADS  Google Scholar 

Comments (0)

No login
gif