S.A. Maier, Plasmonics: Fundamental and Applications (Springer, New York, 2007)
A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007). https://doi.org/10.1016/S1748-0132(07)70017-8
L. Lin, J. Li, W. Li, M.N. Yogeesh, J. Shi, X. Peng, Y. Zheng, Optothermoplasmonic nanolithography for on-demand patterning of 2D materials. Adv. Funct. Mater. 28, 1803990 (2018). https://doi.org/10.1002/adfm.201803990
M. Go, D. Lee, S. Kim, J. Jang, K.W. Kim, J. Lee, S. Shim, J.K. Kim, J. Rho, Facile fabrication of titanium nitride nanoring broad-band absorbers in the visible to near-infrared by shadow sphere lithography. ACS Appl. Mater. Inter. 15, 3266–3273 (2023). https://doi.org/10.1021/acsami.2c17875
X.T. Song, J.Y. Li, Electromagnetic response of core-satellite nanoparticles for application in photothermal conversion. Plasmonics 18, 661–676 (2023). https://doi.org/10.1007/s11468-023-01787-z
S. Vijayakumar, Cancer targeted contrast studies and photothermal therapy using engineered gold nanoparticles. Appl. Phys. A 129, 462 (2023). https://doi.org/10.1007/s00339-023-06736-5
B.K. Jalali, S.S. Shik, L. Karimzadeh-Bardeei, E. Heydari, M.H.M. Ara, Photothermal treatment of glioblastoma cells based on plasmonic nanoparticles. Laser. Med. Sci. 38, 122 (2023). https://doi.org/10.1007/s10103-023-03783-5
A.X. Xiao, J.Y. Zheng, X.L. Wu, W. Cui, P.W. Chen, J.X. Liang, J.Y. Zhong, Y.G. Huang, Y.Y. Huang, B.O. Guan, Ultrasensitive detection and cellular photothermal therapy via a self-photothermal modulation biosensor. Adv. Opt. Mater. 11, 2202711 (2023). https://doi.org/10.1002/adom.202202711
G. Baffou, R. Quidant, F.J. García de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010). https://doi.org/10.1021/nn901144d
I.W. Un, Y. Sivan, Size-dependence of the photothermal response of a single metal nanosphere. J. Appl. Phys. 126, 173103 (2019). https://doi.org/10.1063/1.5123629
G. Baffou, R. Quidant, C. Girard, Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009). https://doi.org/10.1063/1.3116645
F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997)
M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990). https://doi.org/10.1109/3.53394
F.L.S. Cuppo, A.M. Figueiredo Neto, S.L. Gómez, P.P. Muhoray, Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. J. Opt. Soc. Am. B 19, 1342–1348 (2002). https://doi.org/10.1364/JOSAB.19.001342
M.S. Ribeiro, K.C. Ribeiro, V.M. Lenart, R.F. Turchiello, S.L. Gómez, PVP-capped gold nanoparticles: thermal nonlinear refraction probed by spatial self-phase modulation. Phys. Status Solidi A 219, 2100600 (2022). https://doi.org/10.1002/pssa.202100600
W.R. Callen, B.G. Huth, R.H. Pantell, Optical patterns of thermally self-defocused light. Appl. Phys. Lett. 11, 103 (1967). https://doi.org/10.1063/1.1755036
R. Zamiri, R. Parvizi, A. Zakaria, A.R. Sadrolhosseini, G. Zamiri, M. Darroudi, M.S. Husin, Investigation on nonlinear-optical properties of palm oil/silver nanoparticles. J. Europ. Opt. Soc. Rap. Public. 7, 12020 (2012). https://doi.org/10.2971/jeos.2012.12020
L. Sarkhosh, H. Aleali, R. Karimzadeh, N. Mansour, Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone. Phys. Status Solidi A 207, 2303–2310 (2010). https://doi.org/10.1002/pssa.201026021
R. Karimzadeh, Studies of spatial self-phase modulation of the laser beam passing through the liquids. Opt. Commun. 286, 329–333 (2013). https://doi.org/10.1016/j.optcom.2012.08.057
M.S. Ribeiro, K.C. Ribeiro, S.L. Gómez, L.M. Lenart, R.F. Turchiello, Low-cost nonlinear optics experiment for undergraduate instructional laboratory and lecture demonstration: a second experiment. Am. J. Phys. 88, 102–107 (2020). https://doi.org/10.1119/1.4984808
M.A. Wahab, L. Luming, M.A. Matin, M.R. Karim, M.O. Aijaz, H.F. Alharbi, A. Abdala, R. Haque, Silver micro-nanoparticle-based nanoarchitectures: synthesis routes, biomedical applications, and mechanisms of action. Polymers 13, 2870 (2021). https://doi.org/10.3390/polym13172870
M.A. Shenashen, S.A. El-Safty, E.A. Elshehy, Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Part. Part. Syst. Charact. 31, 293–296 (2014). https://doi.org/10.1002/ppsc.201300181
K.C. Ribeiro, L. Fernandes, M.A. Bechlin, R.F. Turchiello, S.L. Gómez, Effect of the excitation wavelength on the photochemical synthesis of citrate-capped Au nanoparticles. Braz. J. Phys. 53, 41 (2023). https://doi.org/10.1007/s13538-022-01251-z
B. Palpant, Y. Guillet, M. Rashidi-Huyeh, D. Prot, Gold nanoparticle assemblies: thermal behaviour under optical excitation. Gold Bull. 41, 105 (2008). https://doi.org/10.1007/BF03216588
J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36, 3 (1965). https://doi.org/10.1063/1.1713919
V. Pilla, E. Munin, M.R.R. Gesualdi, Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques. J. Opt. A: Pure Appl. Opt. 11, 105201 (2009). https://doi.org/10.1088/1464-4258/11/10/105201
I. Bodurov, T. Yovcheva, S. Sainov, J. Phys. Conf. Ser. 558, 012062 (2014). https://doi.org/10.1088/1742-6596/558/1/012062
J.H. Rohling, J. Shen, J. Zhou, C.E. Gu, A.N. Medina, M.L. Baesso, J. Appl. Phys. 99, 103107 (2006). https://doi.org/10.1063/1.2198988
W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 79, 4215–4221 (2007). https://doi.org/10.1021/ac0702084
V. Amendola, M. Meneghetti, Size evaluation of gold nanoparticles by UV-vis spectroscopy. J. Phys. Chem. C 113, 4277–4285 (2009). https://doi.org/10.1021/jp8082425
Y. Wang, Z. Gao, Z. Han, Y. Liu, H. Yang, T. Akkin, C.J. Hogan, J.C. Bischof, Aggregation affects optical properties and photothermal heating of gold nanospheres. Sci. Rep. 11, 898 (2021). https://doi.org/10.1038/s41598-020-79393-w
M. Doyen, K. Bartik, G. Bruylants, UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold-citrate aggregates. J. Colloid Interf. Sci. 399, 1–5 (2013). https://doi.org/10.1016/j.jcis.2013.02.040
J.X. Xu, K. Siriwardana, Y. Zhou, S. Zou, D. Zhang, Quantification of gold nanoparticle ultraviolet-visible extinction, absorption, and scattering cross-section spectra and scattering depolarization spectra: the effects of nanoparticle geometry, solvent composition, ligand functionalization, and nanoparticle aggregation. Anal. Chem. 90, 785–793 (2018). https://doi.org/10.1021/acs.analchem.7b03227
M. Mashayekh, D. Dorranian, Size-dependent nonlinear optical properties and thermal lens in silver nanoparticles. Optik 125, 5612–5617 (2014). https://doi.org/10.1016/j.ijleo.2014.07.066
N. Faraji, W.M.M. Yunus, A. Kharazmi, E. Saion, M. Shahmiri, N. Tamchek, Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites. J. Europ. Opt. Soc. Rap. Public. 7, 12040 (2012). https://doi.org/10.2971/jeos.2012.12040
E. Shahriari, W.M.M. Yunus, E. Saion, Effect of particle size on nonlinear refractive index of Au nanoparticle in PVA solution. Braz. J. Phys. 40, 256–260 (2010)
Comments (0)