Influence of excitation light wavelength and irradiation time on photothermal properties of photochemically synthesized colloidal gold

S.A. Maier, Plasmonics: Fundamental and Applications (Springer, New York, 2007)

Book  Google Scholar 

A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007). https://doi.org/10.1016/S1748-0132(07)70017-8

Article  Google Scholar 

L. Lin, J. Li, W. Li, M.N. Yogeesh, J. Shi, X. Peng, Y. Zheng, Optothermoplasmonic nanolithography for on-demand patterning of 2D materials. Adv. Funct. Mater. 28, 1803990 (2018). https://doi.org/10.1002/adfm.201803990

Article  Google Scholar 

M. Go, D. Lee, S. Kim, J. Jang, K.W. Kim, J. Lee, S. Shim, J.K. Kim, J. Rho, Facile fabrication of titanium nitride nanoring broad-band absorbers in the visible to near-infrared by shadow sphere lithography. ACS Appl. Mater. Inter. 15, 3266–3273 (2023). https://doi.org/10.1021/acsami.2c17875

Article  Google Scholar 

X.T. Song, J.Y. Li, Electromagnetic response of core-satellite nanoparticles for application in photothermal conversion. Plasmonics 18, 661–676 (2023). https://doi.org/10.1007/s11468-023-01787-z

Article  Google Scholar 

S. Vijayakumar, Cancer targeted contrast studies and photothermal therapy using engineered gold nanoparticles. Appl. Phys. A 129, 462 (2023). https://doi.org/10.1007/s00339-023-06736-5

Article  ADS  Google Scholar 

B.K. Jalali, S.S. Shik, L. Karimzadeh-Bardeei, E. Heydari, M.H.M. Ara, Photothermal treatment of glioblastoma cells based on plasmonic nanoparticles. Laser. Med. Sci. 38, 122 (2023). https://doi.org/10.1007/s10103-023-03783-5

Article  Google Scholar 

A.X. Xiao, J.Y. Zheng, X.L. Wu, W. Cui, P.W. Chen, J.X. Liang, J.Y. Zhong, Y.G. Huang, Y.Y. Huang, B.O. Guan, Ultrasensitive detection and cellular photothermal therapy via a self-photothermal modulation biosensor. Adv. Opt. Mater. 11, 2202711 (2023). https://doi.org/10.1002/adom.202202711

Article  Google Scholar 

G. Baffou, R. Quidant, F.J. García de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010). https://doi.org/10.1021/nn901144d

Article  Google Scholar 

I.W. Un, Y. Sivan, Size-dependence of the photothermal response of a single metal nanosphere. J. Appl. Phys. 126, 173103 (2019). https://doi.org/10.1063/1.5123629

Article  ADS  Google Scholar 

G. Baffou, R. Quidant, C. Girard, Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009). https://doi.org/10.1063/1.3116645

Article  ADS  Google Scholar 

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997)

Book  Google Scholar 

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990). https://doi.org/10.1109/3.53394

Article  ADS  Google Scholar 

F.L.S. Cuppo, A.M. Figueiredo Neto, S.L. Gómez, P.P. Muhoray, Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. J. Opt. Soc. Am. B 19, 1342–1348 (2002). https://doi.org/10.1364/JOSAB.19.001342

Article  ADS  Google Scholar 

M.S. Ribeiro, K.C. Ribeiro, V.M. Lenart, R.F. Turchiello, S.L. Gómez, PVP-capped gold nanoparticles: thermal nonlinear refraction probed by spatial self-phase modulation. Phys. Status Solidi A 219, 2100600 (2022). https://doi.org/10.1002/pssa.202100600

Article  ADS  Google Scholar 

W.R. Callen, B.G. Huth, R.H. Pantell, Optical patterns of thermally self-defocused light. Appl. Phys. Lett. 11, 103 (1967). https://doi.org/10.1063/1.1755036

Article  ADS  Google Scholar 

R. Zamiri, R. Parvizi, A. Zakaria, A.R. Sadrolhosseini, G. Zamiri, M. Darroudi, M.S. Husin, Investigation on nonlinear-optical properties of palm oil/silver nanoparticles. J. Europ. Opt. Soc. Rap. Public. 7, 12020 (2012). https://doi.org/10.2971/jeos.2012.12020

Article  Google Scholar 

L. Sarkhosh, H. Aleali, R. Karimzadeh, N. Mansour, Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone. Phys. Status Solidi A 207, 2303–2310 (2010). https://doi.org/10.1002/pssa.201026021

Article  ADS  Google Scholar 

R. Karimzadeh, Studies of spatial self-phase modulation of the laser beam passing through the liquids. Opt. Commun. 286, 329–333 (2013). https://doi.org/10.1016/j.optcom.2012.08.057

Article  ADS  Google Scholar 

M.S. Ribeiro, K.C. Ribeiro, S.L. Gómez, L.M. Lenart, R.F. Turchiello, Low-cost nonlinear optics experiment for undergraduate instructional laboratory and lecture demonstration: a second experiment. Am. J. Phys. 88, 102–107 (2020). https://doi.org/10.1119/1.4984808

Article  ADS  Google Scholar 

M.A. Wahab, L. Luming, M.A. Matin, M.R. Karim, M.O. Aijaz, H.F. Alharbi, A. Abdala, R. Haque, Silver micro-nanoparticle-based nanoarchitectures: synthesis routes, biomedical applications, and mechanisms of action. Polymers 13, 2870 (2021). https://doi.org/10.3390/polym13172870

Article  Google Scholar 

M.A. Shenashen, S.A. El-Safty, E.A. Elshehy, Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Part. Part. Syst. Charact. 31, 293–296 (2014). https://doi.org/10.1002/ppsc.201300181

Article  Google Scholar 

K.C. Ribeiro, L. Fernandes, M.A. Bechlin, R.F. Turchiello, S.L. Gómez, Effect of the excitation wavelength on the photochemical synthesis of citrate-capped Au nanoparticles. Braz. J. Phys. 53, 41 (2023). https://doi.org/10.1007/s13538-022-01251-z

Article  ADS  Google Scholar 

B. Palpant, Y. Guillet, M. Rashidi-Huyeh, D. Prot, Gold nanoparticle assemblies: thermal behaviour under optical excitation. Gold Bull. 41, 105 (2008). https://doi.org/10.1007/BF03216588

Article  Google Scholar 

J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36, 3 (1965). https://doi.org/10.1063/1.1713919

Article  ADS  Google Scholar 

V. Pilla, E. Munin, M.R.R. Gesualdi, Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques. J. Opt. A: Pure Appl. Opt. 11, 105201 (2009). https://doi.org/10.1088/1464-4258/11/10/105201

Article  ADS  Google Scholar 

I. Bodurov, T. Yovcheva, S. Sainov, J. Phys. Conf. Ser. 558, 012062 (2014). https://doi.org/10.1088/1742-6596/558/1/012062

Article  Google Scholar 

J.H. Rohling, J. Shen, J. Zhou, C.E. Gu, A.N. Medina, M.L. Baesso, J. Appl. Phys. 99, 103107 (2006). https://doi.org/10.1063/1.2198988

Article  ADS  Google Scholar 

W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 79, 4215–4221 (2007). https://doi.org/10.1021/ac0702084

Article  Google Scholar 

V. Amendola, M. Meneghetti, Size evaluation of gold nanoparticles by UV-vis spectroscopy. J. Phys. Chem. C 113, 4277–4285 (2009). https://doi.org/10.1021/jp8082425

Article  Google Scholar 

Y. Wang, Z. Gao, Z. Han, Y. Liu, H. Yang, T. Akkin, C.J. Hogan, J.C. Bischof, Aggregation affects optical properties and photothermal heating of gold nanospheres. Sci. Rep. 11, 898 (2021). https://doi.org/10.1038/s41598-020-79393-w

Article  Google Scholar 

M. Doyen, K. Bartik, G. Bruylants, UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold-citrate aggregates. J. Colloid Interf. Sci. 399, 1–5 (2013). https://doi.org/10.1016/j.jcis.2013.02.040

Article  ADS  Google Scholar 

J.X. Xu, K. Siriwardana, Y. Zhou, S. Zou, D. Zhang, Quantification of gold nanoparticle ultraviolet-visible extinction, absorption, and scattering cross-section spectra and scattering depolarization spectra: the effects of nanoparticle geometry, solvent composition, ligand functionalization, and nanoparticle aggregation. Anal. Chem. 90, 785–793 (2018). https://doi.org/10.1021/acs.analchem.7b03227

Article  Google Scholar 

M. Mashayekh, D. Dorranian, Size-dependent nonlinear optical properties and thermal lens in silver nanoparticles. Optik 125, 5612–5617 (2014). https://doi.org/10.1016/j.ijleo.2014.07.066

Article  ADS  Google Scholar 

N. Faraji, W.M.M. Yunus, A. Kharazmi, E. Saion, M. Shahmiri, N. Tamchek, Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites. J. Europ. Opt. Soc. Rap. Public. 7, 12040 (2012). https://doi.org/10.2971/jeos.2012.12040

Article  Google Scholar 

E. Shahriari, W.M.M. Yunus, E. Saion, Effect of particle size on nonlinear refractive index of Au nanoparticle in PVA solution. Braz. J. Phys. 40, 256–260 (2010)

Article 

Comments (0)

No login
gif