Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS (2016) A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res 119:909–920. https://doi.org/10.1161/CIRCRESAHA.116.309202
Article CAS PubMed PubMed Central Google Scholar
Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228
Article CAS PubMed Google Scholar
Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017
Attar A, Hosseinpour A, Hosseinpour H, Kazemi A (2022) Major cardiovascular events after bone marrow mononuclear cell transplantation following acute myocardial infarction: an updated post-BAMI meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 22:259. https://doi.org/10.1186/s12872-022-02701-x
Article PubMed PubMed Central Google Scholar
Belmadani S, Matrougui K, Kolz C, Pung YF, Palen D, Prockop DJ, Chilian WM (2009) Amplification of coronary arteriogenic capacity of multipotent stromal cells by epidermal growth factor. Arterioscler Thromb Vasc Biol 29:802–808. https://doi.org/10.1161/ATVBAHA.109.186189
Article CAS PubMed PubMed Central Google Scholar
Benest AV, Harper SJ, Herttuala SY, Alitalo K, Bates DO (2008) VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis. Cardiovasc Res 78:315–323. https://doi.org/10.1093/cvr/cvm094
Article CAS PubMed Google Scholar
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–667. https://doi.org/10.1126/science.aam8940
Article CAS PubMed PubMed Central Google Scholar
Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, Trapnell C, Shendure J (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502. https://doi.org/10.1038/s41586-019-0969-x
Article CAS PubMed PubMed Central Google Scholar
Carrao AC, Chilian WM, Yun J, Kolz C, Rocic P, Lehmann K, van den Wijngaard JP, van Horssen P, Spaan JA, Ohanyan V, Pung YF, Buschmann I (2009) Stimulation of coronary collateral growth by granulocyte stimulating factor: role of reactive oxygen species. Arterioscler Thromb Vasc Biol 29:1817–1822. https://doi.org/10.1161/ATVBAHA.109.186445
Article CAS PubMed PubMed Central Google Scholar
Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J (2022) Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 25:15–33. https://doi.org/10.1007/s10456-021-09817-2
Article CAS PubMed Google Scholar
Enrick M, Jamaiyar A, Ohanyan V, Juguilon C, Kolz C, Shi X, Janota D, Wan W, Richardson D, Stevanov K, Hakobyan T, Shockling L, Diaz A, Usip S, Dong F, Zhang P, Chilian WM, Yin L (2023) The roles of bone marrow-derived stem cells in coronary collateral growth induced by repetitive ischemia. Cells. https://doi.org/10.3390/cells12020242
Article PubMed PubMed Central Google Scholar
Ernens I, Lumley AI, Zhang L, Devaux Y, Wagner DR (2017) Hypoxia inhibits lymphatic thoracic duct formation in zebrafish. Biochem Biophys Res Commun 482:1129–1134. https://doi.org/10.1016/j.bbrc.2016.11.169
Article CAS PubMed Google Scholar
Fujisawa T, Tura-Ceide O, Hunter A, Mitchell A, Vesey A, Medine C, Gallogly S, Hadoke PWF, Keith C, Sproul A, Roddie H, McQuaker G, Wilmut I, Mills NL, Brittan M (2019) Endothelial progenitor cells do not originate from the bone marrow. Circulation 140:1524–1526. https://doi.org/10.1161/CIRCULATIONAHA.119.042351
Article CAS PubMed PubMed Central Google Scholar
Fujita M, McKown DP, McKown MD, Franklin D (1986) Changes in coronary flow following repeated brief coronary occlusion in the conscious dog. Heart Vessels 2:87–90
Article CAS PubMed Google Scholar
Gyongyosi M, Haller PM, Blake DJ, Martin Rendon E (2018) Meta-analysis of cell therapy studies in heart failure and acute myocardial infarction. Circ Res 123:301–308. https://doi.org/10.1161/CIRCRESAHA.117.311302
Article CAS PubMed Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573–3587. https://doi.org/10.1016/j.cell.2021.04.048
Article CAS PubMed PubMed Central Google Scholar
Hattan N, Chilian WM, Park F, Rocic P (2007) Restoration of coronary collateral growth in the Zucker obese rat: impact of VEGF and ecSOD. Basic Res Cardiol 102:217–223. https://doi.org/10.1007/s00395-007-0646-3
Article CAS PubMed Google Scholar
Hattan N, Warltier D, Gu W, Kolz C, Chilian WM, Weihrauch D (2004) Autologous vascular smooth muscle cell-based myocardial gene therapy to induce coronary collateral growth. Am J Physiol Heart Circ Physiol 287:H488-493. https://doi.org/10.1152/ajpheart.00145.2004
Article CAS PubMed Google Scholar
Heil M, Schaper W (2004) Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 95:449–458
Article CAS PubMed Google Scholar
Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W (2002) Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 283:H2411-2419. https://doi.org/10.1152/ajpheart.01098.2001
Article CAS PubMed Google Scholar
Henry TD, Schaer GL, Traverse JH, Povsic TJ, Davidson C, Lee JS, Costa MA, Bass T, Mendelsohn F, Fortuin FD, Pepine CJ, Patel AN, Riedel N, Junge C, Hunt A, Kereiakes DJ, White C, Harrington RA, Schatz RA, Losordo DW, Act (2016) Autologous CD34(+) cell therapy for refractory angina: 2-year outcomes from the ACT34-CMI study. Cell Transplant 25:1701–1711. https://doi.org/10.3727/096368916X691484
Jiang L, Chen T, Sun S, Wang R, Deng J, Lyu L, Wu H, Yang M, Pu X, Du L, Chen Q, Hu Y, Hu X, Zhou Y, Xu Q, Zhang L (2021) Nonbone marrow CD34(+) cells are crucial for endothelial repair of injured artery. Circ Res 129:e146–e165. https://doi.org/10.1161/CIRCRESAHA.121.319494
Article CAS PubMed Google Scholar
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q (2021) Inference and analysis of cell–cell communication using Cell Chat. Nat Commun 12:1088. https://doi.org/10.1038/s41467-021-21246-9
Article CAS PubMed PubMed Central Google Scholar
Jujo K, Ii M, Losordo DW (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 45:530–544. https://doi.org/10.1016/j.yjmcc.2008.08.003
Article CAS PubMed PubMed Central Google Scholar
Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422–3427. https://doi.org/10.1073/pnas.97.7.3422
Article CAS PubMed PubMed Central Google Scholar
Kalucka J, de Rooij L, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, Garcia-Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, Karakach TK, Falkenberg KD, Parys M, Yin X, Vinckier S, Du Y, Fenton RA, Schoonjans L, Dewerchin M, Eelen G, Thienpont B, Lin L, Bolund L, Li X, Luo Y, Carmeliet P (2020) Single-cell transcriptome atlas of murine endothelial cells. Cell 180:764–779. https://doi.org/10.1016/j.cell.2020.01.015
Comments (0)