Adams V, Reich B, Uhlemann M, Niebauer J (2017) Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 313:H72–H88. https://doi.org/10.1152/ajpheart.00470.2016
Antunes JMM, Ferreira RMP, Moreira-Gonçalves D (2018) Exercise training as therapy for cancer-induced cardiac cachexia. Trends Mol Med 24:709–727. https://doi.org/10.1016/j.molmed.2018.06.002
Article CAS PubMed Google Scholar
Belloum Y, Rannou-Bekono F, Favier FB (2017) Cancer-induced cardiac cachexia: pathogenesis and impact of physical activity (Review). Oncol Rep 37(5):2543–2552. https://doi.org/10.3892/or.2017.5542
Article CAS PubMed Google Scholar
Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105(6):771–785. https://doi.org/10.1007/s00395-010-0124-1
Article CAS PubMed PubMed Central Google Scholar
Caldwell JT, Jones KMD, Park H, Pinto JR, Ghosh P, Reid-Foley EC, Ulrich B, Delp MD, Behnke BJ, Muller-Delp JM (2021) Aerobic exercise training reduces cardiac function and coronary flow-induced vasodilation in mice lacking adiponectin. Am J Physiol Heart Circ Physiol 321(1):H1–H14. https://doi.org/10.1152/ajpheart.00885.2020
Article CAS PubMed PubMed Central Google Scholar
Cedervall J, Herre M, Dragomir A, Rabelo-Melo F, Svensson A, Thålin C, Rosell A, Hjalmar V, Wallén H, Lindman H, Pejler G, Hagström E, Hultström M, Larsson A, Olsson AK (2022) Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology 11:2049487. https://doi.org/10.1080/2162402X.2022.2049487
Article CAS PubMed PubMed Central Google Scholar
Chen D, Goswami CP, Burnett RM, Anjanappa M, Bhat-Nakshatri P, Muller W, Nakshatri H (2014) Cancer affects microRNA expression, release, and function in cardiac and skeletal muscle. Cancer Res 74(16):4270–4281. https://doi.org/10.1158/0008-5472.CAN-13-2817
Article CAS PubMed PubMed Central Google Scholar
Cheung YF, Li VW, So EK, Cheng FW, Yau JP, Chiu SY, Wong WH, Cheuk DK (2023) Remote ischemic conditioning in pediatric cancer patients receiving anthracycline chemotherapy: a sham-controlled single-blind randomized trial. JACC CardioOncol 5(3):332–342. https://doi.org/10.1016/j.jaccao.2022.11.020
Article PubMed PubMed Central Google Scholar
da Costa TSR, Urias U, Negrao MV, Jordão CP, Passos CS, Gomes-Santos IL, Salemi VMC, Camargo AA, Brum PC, Oliveira EM, Hajjar LA, Chammas R, Filho RK, Negrao CE (2021) Breast cancer promotes cardiac dysfunction through deregulation of cardiomyocyte Ca2+-handling protein expression that is not reversed by exercise training. J Am Heart Assoc 10:e018076. https://doi.org/10.1161/JAHA.120.018076
Article PubMed PubMed Central Google Scholar
De Bono JP, Adlam D, Paterson DJ, Channon KM (2006) Novel quantitative phenotypes of exercise training in mouse models. Am J Physiol Integr Comp Physiol 290:R926–R934. https://doi.org/10.1152/ajpregu.00694.2005
de Lucia C, Wallner M, Eaton DM, Zhao H, Houser SR, Koch WJ (2019) Echocardiographic strain analysis for the early detection of left ventricular systolic/diastolic dysfunction and dyssynchrony in a mouse model of physiological aging. J Gerontol A Biol Sci Med Sci 74(4):455–461. https://doi.org/10.1093/gerona/gly139
Deloux R, Vitiello D, Mougenot N, Noirez P, Li Z, Mericskay M, Ferry A, Agbulut O (2017) Voluntary exercise improves cardiac function and prevents cardiac remodeling in a mouse model of dilated cardiomyopathy. Front Physiol 8:899. https://doi.org/10.3389/fphys.2017.00899
Article PubMed PubMed Central Google Scholar
Directo D, Lee SR (2023) Cancer cachexia: underlying mechanisms and potential therapeutic interventions. Metabolites 13(9):1024. https://doi.org/10.3390/metabo13091024
Article CAS PubMed PubMed Central Google Scholar
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK (2022) Myocardial protection and current cancer therapy: two opposite targets with inevitable cost. Int J Mol Sci 23(22):14121. https://doi.org/10.3390/ijms232214121
Article CAS PubMed PubMed Central Google Scholar
Fei Q, Qiu M, Fan G, Zhang B, Wang Q, Zhang S, Wang S, Yang B, Zhang L (2021) Downregulation of hotair or LSD1 impaired heart regeneration in the neonatal mouse. DNA Cell Biol 40:1177–1184. https://doi.org/10.1089/dna.2021.0095
Article CAS PubMed Google Scholar
Fernandes LG, Tobias GC, Paixão AO, Dourado PM, Voltarelli VA, Brum PC (2020) Exercise training delays cardiac remodeling in a mouse model of cancer cachexia. Life Sci 260:118392. https://doi.org/10.1016/j.lfs.2020.118392
Article CAS PubMed Google Scholar
Foulkes SJ, Haykowsky MJ, Li T, Wang J, Kennedy M, Kirkham AA, Thompson RB, Paterson DI, La Gerche A, Pituskin E (2023) Determinants of impaired peak oxygen uptake in breast cancer survivors: JACC: cardiooncology primer. JACC CardioOncol 6(1):33–37. https://doi.org/10.1016/j.jaccao.2023.11.005
Article PubMed PubMed Central Google Scholar
Gan L, Xie D, Liu J, Bond Lau W, Christopher TA, Lopez B, Zhang L, Gao E, Koch W, Ma XL, Wang Y (2020) Small extracellular microvesicles mediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice. Circulation 141(12):968–983. https://doi.org/10.1161/CIRCULATIONAHA.119.042640
Article CAS PubMed PubMed Central Google Scholar
Gent S, Skyschally A, Kleinbongard P, Heusch G (2017) lschemic preconditioning in pigs: a causal role for signal transducer and activator of transcription 3. Am J Physiol Heart Circ Physiol 312(3):H478–H484. https://doi.org/10.1152/ajpheart.00749.2016
Gonzalez NC, Kuwahira I (2018) Systemic oxygen transport with rest, exercise, and hypoxia: a comparison of humans, rats, and mice. Compr Physiol 8(4):1537–1573. https://doi.org/10.1002/cphy.c170051
Guazzi M, Wilhelm M, Halle M, Van Craenenbroeck E, Kemps H, de Boer RA, Coats AJS, Lund L, Mancini D, Borlaug B, Filippatos G, Pieske B (2022) Exercise testing in heart failure with preserved ejection fraction: an appraisal through diagnosis, pathophysiology and therapy—a clinical consensus statement of the Heart Failure Association and European Association of Preventive Cardiology of the European Society of Cardiology. Eur J Heart Fail 24(8):1327–1345. https://doi.org/10.1002/ejhf.2601
Article CAS PubMed Google Scholar
Guo B, Cheng Y, Yao L, Zhang J, Lu J, Qi H, Chen H (2022) LncRNA HOTAIR regulates the lipid accumulation in non-alcoholic fatty liver disease via miR-130b-3p/ROCK1 axis. Cell Signal 90:110190. https://doi.org/10.1016/j.cellsig.2021.110190
Article CAS PubMed Google Scholar
Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M (2019) An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med 6:150. https://doi.org/10.3389/fcvm.2019.00150
Article CAS PubMed PubMed Central Google Scholar
Hildebrandt HA, Kreienkamp V, Gent S, Kahlert P, Heusch G, Kleinbongard P (2016) Kinetics and signal activation properties of circulating factor(s) from healthy volunteers undergoing remote ischemic pre-conditioning. JACC Basic Transl Sci 1(1–2):3–13. https://doi.org/10.1016/j.jacbts.2016.01.007
Article PubMed PubMed Central Google Scholar
Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V, Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen NQ, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A, Drexler H (2007) A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128(3):589–600. https://doi.org/10.1016/j.cell.2006.12.036
Comments (0)