Brominated oxime nucleophiles are efficiently reactivating cholinesterases inhibited by nerve agents

Arnett EM, Reich R (1980) Electronic effects on the Menshutkin reaction. A complete kinetic and thermodynamic dissection of alkyl transfer to 3- and 4-substituted pyridines. J Am Chem Soc 102:5892–5902. https://doi.org/10.1021/ja00538a031

Article  CAS  Google Scholar 

Bajgar J (2004) Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. In: Advances in Clinical Chemistry. Elsevier, pp 151–216

Čadež T, Kolić D, Šinko G, Kovarik Z (2021) Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Sci Rep 11:21486. https://doi.org/10.1038/s41598-021-00953-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carletti E, Colletier J-P, Dupeux F et al (2010) Structural evidence that human acetylcholinesterase inhibited by tabun ages through o-dealkylation. J Med Chem 53:4002–4008. https://doi.org/10.1021/jm901853b

Article  CAS  PubMed  Google Scholar 

Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. OUP Oxford

Book  Google Scholar 

Eichler T, Hauptmann S (2003) The chemistry of heterocycles: structures, reactions, synthesis, and applications, Wiley-VCH Verag GmbH&Co. KGaA

Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Franjesevic AJ, Sillart SB, Beck JM et al (2019) Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chem Eur J 25:5337–5371. https://doi.org/10.1002/chem.201805075

Article  CAS  PubMed  Google Scholar 

Gorecki L, Andrys R, Schmidt M et al (2020) Cysteine-targeted insecticides against A. gambiae acetylcholinesterase are neither selective nor reversible inhibitors. ACS Med Chem Lett 11:65–71. https://doi.org/10.1021/acsmedchemlett.9b00477

Article  CAS  PubMed  Google Scholar 

Gupta R (2015) Handbook of toxicology of chemical warfare agents, 2nd edn. Academic Press Elsevier, Amsterdam

Google Scholar 

Gupta B, Sharma R, Singh N et al (2013) In vitro reactivation kinetics of paraoxon- and DFP-inhibited electric eel AChE using mono- and bis-pyridinium oximes. Arch Toxicol https://doi.org/10.1007/s00204-013-1136-z

Article  PubMed  Google Scholar 

Howes L (2020) Novichok compound poisoned Navalny. C&EN Global Enterp 98:5–5. https://doi.org/10.1021/cen-09835-scicon3

Article  Google Scholar 

John H, van der Schans MJ, Koller M et al (2018) Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic Toxicol 36:61–71. https://doi.org/10.1007/s11419-017-0376-7

Article  CAS  PubMed  Google Scholar 

Karasova JZ, Zemek F, Bajgar J et al (2011) Partition of bispyridinium oximes (trimedoxime and K074) administered in therapeutic doses into different parts of the rat brain. J Pharm Biomed Anal 54:1082–1087. https://doi.org/10.1016/j.jpba.2010.11.024

Article  CAS  PubMed  Google Scholar 

Karasova J, Zemek F, Musilek K, Kuca K (2012) Time-dependent changes of oxime K027 concentrations in different parts of rat central nervous system. Neurotox Res https://doi.org/10.1007/s12640-012-9329-4

Article  PubMed  Google Scholar 

Karasova JZ, Kvetina J, Tacheci I et al (2017a) Pharmacokinetic profile of promising acetylcholinesterase reactivators K027 and K203 in experimental pigs. Toxicol Lett 273:20–25. https://doi.org/10.1016/j.toxlet.2017.03.017

Article  CAS  PubMed  Google Scholar 

Karasova JZ, Maderycova Z, Tumova M et al (2017b) Activity of cholinesterases in a young and healthy middle-European population: relevance for toxicology, pharmacology and clinical praxis. Toxicol Lett 277:24–31. https://doi.org/10.1016/j.toxlet.2017.04.017

Article  CAS  PubMed  Google Scholar 

Katalinić M, Maček Hrvat N, Žďárová Karasová J et al (2015) Translation of in vitro to in vivo pyridinium oxime potential in tabun poisoning. Arh Hig Rada Toksikol 66:291–298. https://doi.org/10.1515/aiht-2015-66-2740

Article  CAS  PubMed  Google Scholar 

Kohoutova Z, Malinak D, Andrys R et al (2022) Charged pyridinium oximes with thiocarboxamide moiety are equally or less effective reactivators of organophosphate-inhibited cholinesterases compared to analogous carboxamides. J Enzyme Inhib Med Chem 37:760–767. https://doi.org/10.1080/14756366.2022.2041628

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuca K, Bielavský J, Cabal J, Bielavská M (2003a) Synthesis of a potential reactivator of acetylcholinesterase—1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane bromide. Tetrahedron Lett 44:3123–3125. https://doi.org/10.1016/S0040-4039(03)00538-0

Article  CAS  Google Scholar 

Kuča K, Bielavský J, Cabal J, Kassa J (2003b) Synthesis of a new reactivator of tabun-inhibited acetylcholinesterase. Bioorg Med Chem Lett 13:3545–3547. https://doi.org/10.1016/S0960-894X(03)00751-0

Article  CAS  PubMed  Google Scholar 

Kuca K, Jun D, Bajgar J (2007) Currently used cholinesterase reactivators against nerve agent intoxication: comparison of their effectivity in vitro. Drug Chem Toxicol 30:31–40. https://doi.org/10.1080/01480540601017637

Article  CAS  PubMed  Google Scholar 

Lei C, Sun X (2018) Comparing lethal dose ratios using probit regression with arbitrary slopes. BMC Pharmacol Toxicol 19:61. https://doi.org/10.1186/s40360-018-0250-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meek E, Chambers H, Coban A et al (2012) Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates. Toxicol Sci 126:525–533. https://doi.org/10.1093/toxsci/kfs013

Article  CAS  PubMed  Google Scholar 

Millard CB, Kryger G, Ordentlich A et al (1999) Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level. Biochemistry 38:7032–7039. https://doi.org/10.1021/bi982678l

Article  CAS  PubMed  Google Scholar 

Misik J, Pavlikova R, Cabal J, Kuca K (2015) Acute toxicity of some nerve agents and pesticides in rats. Drug Chem Toxicol 38:32–36. https://doi.org/10.3109/01480545.2014.900070

Article  CAS  PubMed  Google Scholar 

Misik J, Nepovimova E, Pejchal J et al (2018) Cholinesterase inhibitor 6-chlorotacrine—in vivo toxicological profile and behavioural effects. Curr Alzheimer Res 15:552–560. https://doi.org/10.3109/01480545.2014.900070

Article  CAS  PubMed  Google Scholar 

Moshiri M, Darchini-Maragheh E, Balali-Mood M (2012) Advances in toxicology and medical treatment of chemical warfare nerve agents. Daru J Pharm Sci 20:81. https://doi.org/10.1186/2008-2231-20-81

Article  CAS  Google Scholar 

Musil K, Florianova V, Bucek P et al (2016) Development and validation of a FIA/UV–vis method for pKa determination of oxime based acetylcholinesterase reactivators. J Pharm Biomed Anal 117:240–246. https://doi.org/10.1016/j.jpba.2015.09.010

Article  CAS  PubMed  Google Scholar 

Musilek K, Jun D, Cabal J et al (2007) Design of a potent reactivator of tabun-inhibited acetylcholinesterase–synthesis and evaluation of (E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide (K203). J Med Chem 50:5514–5518. https://doi.org/10.1021/jm070653r

Article  CAS  PubMed  Google Scholar 

Musilek K, Malinak D, Nepovimova E et al (2020) Chapter 69—novel cholinesterase reactivators. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents, 3rd edn. Academic Press, Boston, pp 1161–1177

Chapter  Google Scholar 

Nepovimova E, Kuca K (2018) Chemical warfare agent NOVICHOK—mini-review of available data. Food Chem Toxicol 121:343–350. https://doi.org/10.1016/j.fct.2018.09.015

Comments (0)

No login
gif