Allen JJ, Reznik SJ (2015) Frontal EEG asymmetry as a promising marker of Depression vulnerability: Summary and Methodological considerations. Curr Opin Psychol 4:93–97. https://doi.org/10.1016/j.copsyc.2014.12.017
Article PubMed PubMed Central Google Scholar
Aoh Y, Hsiao HJ, Lu MK, Macerollo A, Huang HC, Hamada M, Chen JC (2019) Event-related Desynchronization/Synchronization in Spinocerebellar Ataxia Type 3. Front Neurol 10:822. https://doi.org/10.3389/fneur.2019.00822
Article PubMed PubMed Central Google Scholar
Babiloni C, Brancucci A, Babiloni F, Capotosto P, Carducci F, Cincotti F, Rossini PM (2003) Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study. Eur J Neurosci 18(6):1692–1700. https://doi.org/10.1046/j.1460-9568.2003.02851.x
Batky BD, Salekin RT, Houser RA (2020) Frontal alpha asymmetry and emotional processing in youth with psychopathic traits. Psychophysiology 57(12):e13680. https://doi.org/10.1111/psyp.13680
Ben-Menachem E, Revesz D, Simon BJ, Silberstein S (2015) Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol 22(9):1260–1268. https://doi.org/10.1111/ene.12629
Article CAS PubMed Google Scholar
Beste C, Willemssen R, Saft C, Falkenstein M (2010) Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 48(2):366–373. https://doi.org/10.1016/j.neuropsychologia.2009.09.023
Bowles S, Hickman J, Peng X, Williamson WR, Huang R, Washington K, Welle CG (2022) Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron 110(17):2867–2885e2867. https://doi.org/10.1016/j.neuron.2022.06.017
Article CAS PubMed PubMed Central Google Scholar
Broelz EK, Enck P, Niess AM, Schneeweiss P, Wolf S, Weimer K (2019) The neurobiology of placebo effects in sports: EEG frontal alpha asymmetry increases in response to a placebo ergogenic aid. Sci Rep 9(1):2381. https://doi.org/10.1038/s41598-019-38828-9
Article PubMed PubMed Central Google Scholar
Bruce V, Young A (1986) Understanding face recognition. Br J Psychol 77(3):305–327. https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
Bruder GE, Sedoruk JP, Stewart JW, McGrath PJ, Quitkin FM, Tenke CE (2008) Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre- and post-treatment findings. Biol Psychiatry 63(12):1171–1177. https://doi.org/10.1016/j.biopsych.2007.10.009
Article CAS PubMed Google Scholar
Bruder GE, Stewart JW, McGrath PJ (2017) Right brain, left brain in depressive disorders: clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neurosci Biobehav Rev 78:178–191. https://doi.org/10.1016/j.neubiorev.2017.04.021
Brydges C, Fox A, Reid C, Anderson M (2014) Predictive validity of the N2 and P3 ERP components to executive functioning in children: a latent-variable analysis. Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00080. [Original Research]
Capone F, Assenza G, Di Pino G, Musumeci G, Ranieri F, Florio L, Di Lazzaro V (2015) The effect of transcutaneous vagus nerve stimulation on cortical excitability. J Neural Transm (Vienna) 122(5):679–685. https://doi.org/10.1007/s00702-014-1299-7
Chen S, Sun J, Tong S (2012) Delayed attentional disengagement from sad face: a study of alpha rhythm by event-related desynchronization. Annu Int Conf IEEE Eng Med Biol Soc 2012:6776–6779. https://doi.org/10.1109/embc.2012.6347550
Chen M, Yu L, Ouyang F, Liu Q, Wang Z, Wang S, Zhou S (2015) The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? Int J Cardiol 187:44–45. https://doi.org/10.1016/j.ijcard.2015.03.351
Chen S, Li Y, Shu X, Wang C, Wang H, Ding L, Jia J (2020) Electroencephalography Mu Rhythm changes and decreased spasticity after repetitive peripheral magnetic stimulation in patients following stroke. Front Neurol 11:546599. https://doi.org/10.3389/fneur.2020.546599
Article PubMed PubMed Central Google Scholar
Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41. https://doi.org/10.1038/sj.npp.1301559
Codispoti M, De Cesarei A, Ferrari V (2023) Alpha-band oscillations and emotion: a review of studies on picture perception. Psychophysiology 60(12):e14438. https://doi.org/10.1111/psyp.14438
de Melo PS, Parente J, Rebello-Sanchez I, Marduy A, Gianlorenco AC, Kim K, Fregni C, F (2023) Understanding the Neuroplastic effects of Auricular Vagus nerve stimulation in animal models of stroke: a systematic review and Meta-analysis. Neurorehabil Neural Repair 37(8):564–576. https://doi.org/10.1177/15459683231177595
Del Percio C, Le Pera D, Arendt-Nielsen L, Babiloni C, Brancucci A, Chen AC, Rossini PM (2006) Distraction affects frontal alpha rhythms related to expectancy of pain: an EEG study. NeuroImage 31(3):1268–1277. https://doi.org/10.1016/j.neuroimage.2006.01.013
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Dong G, Yang L, Hu Y, Jiang Y (2009) Is N2 associated with successful suppression of behavior responses in impulse control processes? NeuroReport. 20(6):537–542. https://doi.org/10.1097/WNR.0b013e3283271e9b
Eimer M (1993) Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biol Psychol 35(2):123–138. https://doi.org/10.1016/0301-0511(93)90009-w
Article CAS PubMed Google Scholar
Falkenstein M, Hoormann J, Hohnsbein J (1999) ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol (Amst) 101(2–3):267–291. https://doi.org/10.1016/s0001-6918(99)00008-6
Article CAS PubMed Google Scholar
Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, Koenig J (2021) International Consensus Based Review and recommendations for Minimum Reporting standards in Research on Transcutaneous Vagus nerve stimulation (Version 2020) [Review]. Front Hum Neurosci 14. https://doi.org/10.3389/fnhum.2020.568051
Frangos E, Ellrich J, Komisaruk BR (2015) Non-invasive Access to the vagus nerve Central projections via Electrical Stimulation of the external ear: fMRI evidence in humans. Brain Stimul 8(3):624–636. https://doi.org/10.1016/j.brs.2014.11.018
Garrido MV, Prada M (2017) KDEF-PT: Valence, emotional intensity, familiarity and attractiveness ratings of Angry, Neutral, and happy faces. Front Psychol 8:2181. https://doi.org/10.3389/fpsyg.2017.02181
Article PubMed PubMed Central Google Scholar
Gianlorenco AC, Pacheco-Barrios K, Camargo L, Pichardo E, Choi H, Song JJ, Fregni F (2024) Understanding the effects of non-invasive transauricular vagus nerve stimulation on EEG and HRV. J Vis Exp 203 https://doi.org/10.3791/66309
Han YL, Dai ZP, Ridwan MC, Lin PH, Zhou HL, Wang HF, Lu Q (2020) Connectivity of the Frontal Cortical Oscillatory Dynamics underlying Inhibitory Control during a Go/No-Go Task as a predictive biomarker in Major Depression. Front Psychiatry 11:707. https://doi.org/10.3389/fpsyt.2020.00707
Article PubMed PubMed Central Google Scholar
Hartikainen KM (2021) Emotion-attention Interaction in the right hemisphere. Brain Sci 11(8). https://doi.org/10.3390/brainsci11081006
He JL, Fuelscher I, Coxon J, Chowdhury N, Teo WP, Barhoun P, Hyde C (2019) Individual differences in intracortical inhibition predict motor-inhibitory performance. Exp Brain Res 237(10):2715–2727. https://doi.org/10.1007/s00221-019-05622-y
Helfrich RF, Knight RT (2019) Cognitive neurophysiology: event-related potentials. Handb Clin Neurol 160:543–558. https://doi.org/10.1016/b978-0-444-64032-1.00036-9
Herrmann MJ, Jacob C, Unterecker S, Fallgatter AJ (2003) Reduced response-inhibition in obsessive-compulsive disorder measured with topographic evoked potential mapping. Psychiatry Res 120(3):265–271. https://doi.org/10.1016/s0165-1781(03)00188-4
Comments (0)