Hartnett ME, Lane RH (2013) Effects of oxygen on the development and severity of retinopathy of prematurity. J AAPOS 17(3):229–234. https://doi.org/10.1016/j.jaapos.2012.12.155
Article PubMed PubMed Central Google Scholar
Mandala VK, Urakurva AK, Gangadhari S, Kotha R Sr (2023) The effects of early enteral and parental nutrition on retinopathy of prematurity: a systematic review. Cureus 15(11):e49029. https://doi.org/10.7759/cureus.49029
Article PubMed PubMed Central Google Scholar
Fu Z, Nilsson AK, Hellstrom A, Smith LEH (2022) Retinopathy of prematurity: metabolic risk factors. Elife. https://doi.org/10.7554/eLife.80550
Article PubMed PubMed Central Google Scholar
Sato T, Wada K, Arahori H, Kuno N, Imoto K, Iwahashi-Shima C, Kusaka S (2012) Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol 153(2):327-333.e321. https://doi.org/10.1016/j.ajo.2011.07.005
Article CAS PubMed Google Scholar
Zehden JA, Mortensen XM, Reddy A, Zhang AY (2022) Systemic and ocular adverse events with intravitreal anti-VEGF therapy used in the treatment of diabetic retinopathy: a review. Curr Diab Rep 22(10):525–536. https://doi.org/10.1007/s11892-022-01491-y
Joyal JS, Gantner ML, Smith LEH (2018) Retinal energy demands control vascular supply of the retina in development and disease: the role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 64:131–156. https://doi.org/10.1016/j.preteyeres.2017.11.002
Article CAS PubMed Google Scholar
Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44–52. https://doi.org/10.1038/nn.2234
Article CAS PubMed Google Scholar
Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Bruning U, Visnagri A, Yuldasheva N, Goveia J, Cruys B, Brepoels K, Wyns S, Rayport S, Ghesquiere B, Vinckier S, Schoonjans L, Cubbon R, Dewerchin M, Eelen G, Carmeliet P (2017) Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 36(16):2334–2352. https://doi.org/10.15252/embj.201695518
Article CAS PubMed PubMed Central Google Scholar
Vandekeere S, Dubois C, Kalucka J, Sullivan MR, Garcia-Caballero M, Goveia J, Chen R, Diehl FF, Bar-Lev L, Souffreau J, Pircher A, Kumar S, Vinckier S, Hirabayashi Y, Furuya S, Schoonjans L, Eelen G, Ghesquiere B, Keshet E, Li X, Vander Heiden MG, Dewerchin M, Carmeliet P (2018) Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab 28(4):573-587.e513. https://doi.org/10.1016/j.cmet.2018.06.009
Article CAS PubMed Google Scholar
Yu-Wai-Man P, Newman NJ (2017) Inherited eye-related disorders due to mitochondrial dysfunction. Hum Mol Genet 26(R1):R12–R20. https://doi.org/10.1093/hmg/ddx182
Article CAS PubMed PubMed Central Google Scholar
Birtel J, von Landenberg C, Gliem M, Gliem C, Reimann J, Kunz WS, Herrmann P, Betz C, Caswell R, Nesbitt V, Kornblum C, Charbel Issa P (2022) Mitochondrial retinopathy. Ophthalmol Retina 6(1):65–79. https://doi.org/10.1016/j.oret.2021.02.017
Rath PP, Jenkins S, Michaelides M, Smith A, Sweeney MG, Davis MB, Fitzke FW, Bird AC (2008) Characterisation of the macular dystrophy in patients with the A3243G mitochondrial DNA point mutation with fundus autofluorescence. Br J Ophthalmol 92(5):623–629. https://doi.org/10.1136/bjo.2007.131177
Article CAS PubMed Google Scholar
Daruich A, Matet A, Borruat FX (2014) Macular dystrophy associated with the mitochondrial DNA A3243G mutation: pericentral pigment deposits or atrophy? Report of two cases and review of the literature. BMC Ophthalmol 14:77. https://doi.org/10.1186/1471-2415-14-77
Article PubMed PubMed Central Google Scholar
Engvall M, Kawasaki A, Carelli V, Wibom R, Bruhn H, Lesko N, Schober FA, Wredenberg A, Wedell A, Traisk F (2021) Case report: a novel mutation in the mitochondrial MT-ND5 gene is associated with leber hereditary optic neuropathy (LHON). Front Neurol 12:652590. https://doi.org/10.3389/fneur.2021.652590
Article PubMed PubMed Central Google Scholar
Joyal JS, Sun Y, Gantner ML, Shao Z, Evans LP, Saba N, Fredrick T, Burnim S, Kim JS, Patel G, Juan AM, Hurst CG, Hatton CJ, Cui Z, Pierce KA, Bherer P, Aguilar E, Powner MB, Vevis K, Boisvert M, Fu Z, Levy E, Fruttiger M, Packard A, Rezende FA, Maranda B, Sapieha P, Chen J, Friedlander M, Clish CB, Smith LE (2016) Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 22(4):439–445. https://doi.org/10.1038/nm.4059
Article CAS PubMed PubMed Central Google Scholar
Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111
Mowat FM, Luhmann UF, Smith AJ, Lange C, Duran Y, Harten S, Shukla D, Maxwell PH, Ali RR, Bainbridge JW (2010) HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia. PLoS ONE 5(6):e11103. https://doi.org/10.1371/journal.pone.0011103
Article CAS PubMed PubMed Central Google Scholar
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE (2020) Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion 53:214–223. https://doi.org/10.1016/j.mito.2020.06.004
Article CAS PubMed PubMed Central Google Scholar
Du J, Rountree A, Cleghorn WM, Contreras L, Lindsay KJ, Sadilek M, Gu H, Djukovic D, Raftery D, Satrustegui J, Kanow M, Chan L, Tsang SH, Sweet IR, Hurley JB (2016) Phototransduction influences metabolic flux and nucleotide metabolism in Mouse Retina. J Biol Chem 291(9):4698–4710. https://doi.org/10.1074/jbc.M115.698985
Article CAS PubMed Google Scholar
Tomita Y, Cagnone G, Fu Z, Cakir B, Kotoda Y, Asakage M, Wakabayashi Y, Hellstrom A, Joyal JS, Talukdar S, Smith LEH, Usui Y (2021) Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia 64(1):70–82. https://doi.org/10.1007/s00125-020-05309-y
Article CAS PubMed Google Scholar
El-Tanani S, Yumnamcha T, Singh LP, Ibrahim AS (2022) Differential effects of cytopathic hypoxia on human retinal endothelial cellular behavior: implication for ischemic retinopathies. Int J Mol Sci. https://doi.org/10.3390/ijms23084274
Article PubMed PubMed Central Google Scholar
Liu Z, Yan S, Wang J, Xu Y, Wang Y, Zhang S, Xu X, Yang Q, Zeng X, Zhou Y, Gu X, Lu S, Fu Z, Fulton DJ, Weintraub NL, Caldwell RB, Zhang W, Wu C, Liu XL, Chen JF, Ahmad A, Kaddour-Djebbar I, Al-Shabrawey M, Li Q, Jiang X, Sun Y, Sodhi A, Smith L, Hong M, Huo Y (2017) Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat Commun 8(1):584. https://doi.org/10.1038/s41467-017-00551-2
Article CAS PubMed PubMed Central Google Scholar
Xu Y, An X, Guo X, Habtetsion TG, Wang Y, Xu X, Kandala S, Li Q, Li H, Zhang C, Caldwell RB, Fulton DJ, Su Y, Hoda MN, Zhou G, Wu C, Huo Y (2014) Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol 34(6):1231–1239. https://doi.org/10.1161/ATVBAHA.113.303041
Article CAS PubMed PubMed Central Google Scholar
Liu Z, Xu J, Ma Q, Zhang X, Yang Q, Wang L, Cao Y, Xu Z, Tawfik A, Sun Y, Weintraub NL, Fulton DJ, Hong M, Dong Z, Smith LEH, Caldwell RB, Sodhi A, Huo Y (2020) Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay1371
Article PubMed PubMed Central Google Scholar
Liu Z, Shi H, Xu J, Yang Q, Ma Q, Mao X, Xu Z, Zhou Y, Da Q, Cai Y, Fulton DJ, Dong Z, Sodhi A, Caldwell RB, Huo Y (2022) Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy. JCI Insight. https://doi.org/10.1172/jci.insight.160940
Comments (0)