Márquez-Grant N. An overview of age estimation in forensic anthropology: perspectives and practical considerations. Ann Hum Biol. 2015;42(4):308–22.
Hartnett KM. Analysis of age-at-death estimation using data from a new, modern autopsy sample—Part I: Pubic bone*,†. J Forensic Sci [Internet]. 2010 [cited 2024 Apr 21];55(5):1145–1151. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1556-4029.2010.01399.x
Işcan MY, Loth SR, Wright RK. Metamorphosis at the sternal rib end: a new method to estimate age at death in white males. Am J Phys Anthropol. 1984Oct;65(2):147–56.
Brooks S, Suchey JM. Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum Evol [Internet]. 1990 [cited 2024 Apr 21];5(3):227–238. Available from: https://doi.org/10.1007/BF02437238
Villa C, Hansen MN, Buckberry J, Cattaneo C, Lynnerup N. Forensic age estimation based on the trabecular bone changes of the pelvic bone using post-mortem CT. Forensic Sci Int. 2013;233(1–3):393–402.
Buckberry JL, Chamberlain AT. Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol. 2002;119(3):231–9.
Article PubMed CAS Google Scholar
Schanandore JV, Ford JM, Decker SJ. Correlation between chronological age and computed tomography attenuation of trabecular bone from the os coxae. J Forensic Radiol Imaging [Internet]. 2018;14:24–31. Available from: https://www.sciencedirect.com/science/article/pii/S2212478018300571
Chappard D, Baslé MF, Legrand E, Audran M. Trabecular bone microarchitecture: a review. Morphol Bull Assoc Anat. 2008;92(299):162–70.
Link TM, Bauer JS. Imaging of trabecular bone structure. Semin Musculoskelet Radiol. 2002;6(3):253–61.
Zainuddin MZ, Mohamad NS, Su Keng T, Mohd Yusof MYP. The applications of MicroCT in studying age-related tooth morphological change and dental age estimation: a scoping review. J Forensic Sci. 2023;68(6):2048–56.
He RT, Tu MG, Huang HL, Tsai MT, Wu J, Hsu JT. Improving the prediction of the trabecular bone microarchitectural parameters using dental cone-beam computed tomography. BMC Med Imaging [Internet]. 2019 [cited 2023 Sep 10];19(1):10. Available from: https://europepmc.org/articles/PMC6343305
McGivern H, Greenwood C, Márquez-Grant N, Kranioti EF, Xhemali B, Zioupos P. Age-related trends in the trabecular micro-architecture of the medial clavicle: Is it of use in forensic science? Front Bioeng Biotechnol [Internet]. 2020 [cited 2023 Sep 10];7. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2019.00467
Walker RA, Lovejoy CO. Radiographic changes in the clavicle and proximal femur and their use in the determination of skeletal age at death. Am J Phys Anthropol. 1985;68(1):67–78.
Article PubMed CAS Google Scholar
Henry BM, Tomaszewski KA, Ramakrishnan PK, Roy J, Vikse J, Loukas M, Tubbs RS, Walocha JA. Development of the Anatomical Quality Assessment (AQUA) tool for the quality assessment of anatomical studies included in meta-analyses and systematic reviews. Clin Anat. 2017;30(1):6–13.
Alvarenga JC, Fuller H, Pasoto SG, Pereira RMR. Age-related reference curves of volumetric bone density, structure, and biomechanical parameters adjusted for weight and height in a population of healthy women: an HR-pQCT study. Osteoporos Int J. 2017;28(4):1335–46.
Alvarenga JC, Caparbo VF, Domiciano DS, Pereira RMR. Age-related reference data of bone microarchitecture, volumetric bone density, and bone strength parameters in a population of healthy Brazilian men: an HR-pQCT study. Osteoporos Int J. 2022;33(6):1309–21.
Hung VWY, Zhu TY, Cheung WH, Fong TN, Yu FWP, Hung LK, et al. Age-related differences in volumetric bone mineral density, microarchitecture, and bone strength of distal radius and tibia in Chinese women: a high-resolution pQCT reference database study. Osteoporos Int [Internet]. 2015 [cited 2023 Sep 10];26(6):1691–1703. Available from: https://doi.org/10.1007/s00198-015-3045-x
Tabassum A, Chainchel Singh MK, Ibrahim N, Ramanarayanan S, MohdYusof MYP. Quantifications of mandibular trabecular bone microstructure using cone beam computed tomography for age estimation: a preliminary study. Biology. 2022;11(10):1521.
Article PubMed PubMed Central Google Scholar
Kirchhoff C, Braunstein V, Milz S, Sprecher CM, Kirchhoff S, Graw M, et al. Age and gender as determinants of the bone quality of the greater tuberosity: A HR-pQCT cadaver study. BMC Musculoskelet Disord [Internet]. 2012 [cited 2023 Sep 10];13:221. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517743/
Chen H, Zhou X, Shoumura S, Emura S, Bunai Y. Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int J. 2010;21(4):627–36.
Ding M, Odgaard A, Linde F, Hvid I. Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res Off Publ Orthop Res Soc. 2002;20(3):615–21.
Mittra E, Rubin C, Gruber B, Qin YX. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, microCT, and DXA. J Biomech. 2008;41(2):368–75.
Wade A, Nelson A, Garvin G, Holdsworth DW. Preliminary radiological assessment of age-related change in the trabecular structure of the human os pubis. J Forensic Sci. 2011;56(2):312–9.
Chen H, Shoumura S, Emura S, Bunai Y. Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporos Int J. 2008;19(10):1473–83.
Lochmüller EM, Matsuura M, Bauer J, Hitzl W, Link TM, Müller R, et al. Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J Bone Miner Res [Internet]. 2008 [cited 2023 Sep 10];23(12):1964–1973. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1359/jbmr.080709
Deguette C, Chappard D, Libouban H, Airagnes G, Rouge-Maillart C, Telmon N. The contribution of micro-CT to the evaluation of trabecular bone at the posterior part of the auricular surface in men. Int J Legal Med. 2018;132(4):1231–9.
Macho GA, Abel RL, Schutkowski H. Age changes in bone microstructure: Do they occur uniformly? Int J Osteoarchaeol [Internet]. 2005 [cited 2023 Sep 10];15(6):421–430. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/oa.797.
Cui WQ, Won YY, Baek MH, Lee DH, Chung YS, Hur JH, et al. Age-and region-dependent changes in three-dimensional microstructural properties of proximal femoral trabeculae. Osteoporos Int [Internet]. 2008 [cited 2023 Sep 10];19(11):1579–1587. Available from: https://doi.org/10.1007/s00198-008-0601-7
Mosekilde L, Ebbesen EN, Tornvig L, Thomsen JS. Trabecular bone structure and strength-remodelling and repair. J Musculoskelet Neuronal Interact. 2000;1(1):25–30.
Meindl RS, Lovejoy CO. Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am J Phys Anthropol. 1985;68(1):57–66.
Article PubMed CAS Google Scholar
Wang F, Zheng L, Theopold J, Schleifenbaum S, Heyde CE, Osterhoff G. Methods for bone quality assessment in human bone tissue: a systematic review. J Orthop Surg. 2022;17(1):174.
Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone. 2015;79:213–21.
Article PubMed CAS Google Scholar
Lee JH, Kim HJ, Yun JH. Three-dimensional microstructure of human alveolar trabecular bone: A micro-computed tomography study. J Periodontal Implant Sci. 2017;47(1):20–9.
Article PubMed PubMed Central Google Scholar
Kim YJ, Henkin J. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture. Clin Implant Dent Relat Res. 2015;17(2):307–13.
Greenwood C, Clement J, Dicken A, Evans P, Lyburn I, Martin RM, et al. Age-related changes in femoral head trabecular microarchitecture. Aging Dis [Internet]. 2018 [cited 2023 Sep 20];9(6):976–987. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284768/
Ding M, Danielsen CC, Hvid I, Overgaard S. Three-dimensional microarchitecture of adolescent cancellous bone. Bone. 2012;51(5):953–60.
Stauber M, Müller R. Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int J. 2006;17(4):616–26.
Vedi S, Compston JE, Webb A, Tighe JR. Histomorphometric analysis of bone biopsies from the iliac crest of normal British subjects. Metab Bone Dis Relat Res. 1982;4(4):231–6.
Article PubMed CAS Google Scholar
Dahl E, Nordal KP, Halse J, Attramadal A. Histomorphometric analysis of normal bone from the iliac crest of Norwegian subjects. Bone Miner. 1988;3(4):369–77.
Lips P, Courpron P, Meunier PJ. Mean wall thickness of trabecular bone packets in the human iliac crest: Changes with age. Calcif Tissue Res [Internet]. 1978 [cited 2023 Sep 10];26(1):13–17. Available from: https://doi.org/10.1007/BF02013227
Giordano V, Franco JS, Koch HA, Labronici PJ, Pires RES, Amaral NPD. Age-related changes in bone architecture. Rev Col Bras Cir. 2016;43(4):276–85.
Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72(4):1396–1409.
Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013;2013:213234.
Comments (0)