Potential phytoremediation of coal fly ash leachate using Lemna minor: a free floating macrophyte

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

Article  CAS  PubMed  Google Scholar 

Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azeez NM, Sabbar AA. Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah Oil Refinery. J Appl Phytotechnol Environ Sanit. 2012;1:163–72.

CAS  Google Scholar 

Babić M, Radić S, Cvjetko P, Roje V, Pevalek-Kozlina B, Pavlica M. Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquat Bot. 2009;91:166–72.

Article  Google Scholar 

Banu Doğanlar Z. Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba L. minor and Spirodela polyrhiza. Chem Speciat Bioavailab. 2013;25:79–88.

Article  Google Scholar 

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

Article  CAS  PubMed  Google Scholar 

Bridgewater LL, Baird RB, Eaton AD, Rice EW, American Public Health Association, American Water Works Association, et al., editors. Standard methods for the examination of water and wastewater. 23rd edn. Washington: American Public Health Association; 2017.

Chakraborty R, Mukherjee AK, Mukherjee A. Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environ Monit Assess. 2009;153:351–7.

Article  CAS  PubMed  Google Scholar 

Chen M, Zhang L-L, Li J, He X-J, Cai J-C. Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead. Ecotoxicol Environ Saf. 2015;122:313–21.

Article  CAS  PubMed  Google Scholar 

Cvjetko P, Tolić S, Šikić S, Balen B, Tkalec M, Vidaković-Cifrek Ž, et al. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (L). Arch Ind Hyg Toxicol. 2010;61:287–96.

CAS  Google Scholar 

Drost W, Matzke M, Backhaus T. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere. 2007;67:36–43.

Article  CAS  PubMed  Google Scholar 

Dudas MJ. Long-term leachability of selected elements from fly ash. Environ Sci Technol. 1981;15:840–3.

Article  CAS  Google Scholar 

El-Mogazi D, Lisk DJ, Weinstein LH. A review of physical, chemical, and biological properties of fly ash and effects on agricultural ecosystems. Sci Total Environ. 1988;74:1–37.

Article  CAS  PubMed  Google Scholar 

Ghosh M, Paul J, Jana A, De A, Mukherjee A. Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecol Eng. 2015;74:258–65.

Article  Google Scholar 

Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.

Article  CAS  PubMed  Google Scholar 

Goswami C, Majumder A. Potential of Lemna minor in Ni and Cr removal from aqueous solution. Pollution. 2015;1:373–85.

Google Scholar 

Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98.

Article  CAS  PubMed  Google Scholar 

Hemeda HM, Klein BP. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci. 1990;55:184–5.

Article  CAS  Google Scholar 

Horvat T, Vidaković-Cifrek Ž, Oreščanin V, Tkalec M, Pevalek-Kozlina B. Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci Total Environ. 2007;384:229–38.

Article  CAS  PubMed  Google Scholar 

Jana A, Ghosh M, Sinha S, Jothiramajayam M, Nag A, Mukherjee A. Hazard identification of coal fly ash leachate using a battery of cyto-genotoxic and biochemical tests in. Arch Agron Soil Sci. 2017;63:1443–53.

Article  CAS  Google Scholar 

Kanoun-Boulé M, Vicente JAF, Nabais C, Prasad MNV, Freitas H. Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol. 2009;91:1–9.

Article  PubMed  Google Scholar 

Kara Y. Bioaccumulation of copper from contaminated wastewater by using Lemna minor. Bull Environ Contam Toxicol. 2004;72:467–71.

Article  CAS  PubMed  Google Scholar 

Khellaf N, Zerdaoui M. Growth, photosynthesis and respiratory response in Lemna minor: a potential use of duckweed. Iran J Environ Health Sci Eng. 2010;7:299–306.

CAS  Google Scholar 

Kleinjans JCS, Janssen YMW, van Agen B, Hageman GJ, Schreurs JGM. Genotoxicity of coal fly ash, assessed in vitro in Salmonella typhimurium and human lymphocytes, and in vivo in an occupationally exposed population. Mutat Res Genet Toxicol. 1989;224:127–34.

Article  CAS  Google Scholar 

Leão GA, de Oliveira JA, Felipe RTA, Farnese FS, Gusman GS. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. J Plant Interact. 2014;9:143–51.

Article  Google Scholar 

Leblebici Z, Aksoy A. Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut. 2011;214:175–84.

Article  CAS  PubMed  Google Scholar 

Manerikar RS, Apte AA, Ghole VS. In vitro and in vivo genotoxicity assessment of Cr(VI) using comet assay in earthworm coelomocytes. Environ Toxicol Pharmacol. 2008;25:63–8.

Article  CAS  PubMed  Google Scholar 

Mattigod SV, Rai D, Eary LE, Ainsworth CC. Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. J Environ Qual. 1990;19:188–201.

Article  CAS  Google Scholar 

Navarrete MH, Carrera P, de Miguel M, de la Torre C. A fast comet assay variant for solid tissue cells. The assessment of DNA damage in higher plants. Mutat Res Genet Toxicol Environ Mutagen. 1997;389:271–7.

Article  Google Scholar 

Newete SW, Byrne MJ. The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res Int. 2016;23:10630–43.

Article  CAS  PubMed  Google Scholar 

Praharaj T, Powell MA, Hart BR, Tripathy S. Leachability of elements from sub-bituminous coal fly ash from India. Environ Int. 2002;27:609–15.

Article  CAS  PubMed  Google Scholar 

Radić S, Babić M, Škobić D, Roje V, Pevalek-Kozlina B. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in L. Ecotoxicol Environ Saf. 2010;73:336–42.

Article  PubMed  Google Scholar 

Radić S, Stipanicev D, Cvjetko P, Mikelić IL, Rajcić MM, Sirac S, et al. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology. 2010;19:216–22.

Article  PubMed  Google Scholar 

Razinger J, Dermastia M, Drinovec L, Drobne D, Zrimec A, Koce JD. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure. Environ Sci Pollut Res Int. 2007;14:194–201.

Article  CAS  PubMed  Google Scholar 

Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater. 2016;318:587–99.

Article  CAS  PubMed  Google Scholar 

Sarode DB, Jadhav RN, Khatik VA, Ingle ST, Attarde SB. Extraction and leaching of heavy metals from thermal power plant fly ash and its admixtures. Pol J Enviro

Comments (0)

No login
gif