Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I. 2009. Transduction mechanisms of photoreceptor signals in plant cells. J. Photochem. Photobiol. C: Photochem. Rev. 10, 63–80.
Kreslavski V.D., Fomina I.R., Los D.A., Carpentier R., Kuznetsov V.V., Allakhverdiev S.I. 2012. Red and near infra-red signaling: Hypothesis and perspectives. J. Photochem. Photobiol. 13, 190–203. https://doi.org/10.1016/j.jphotochemrev.2012.01.002
Demotes-Mainard S., Péron T., Corot A., Bertheloot J., Gourrierec J.L., Pelleschi-Travier S., Crespel L., Mo-rel P., Huché-Thélier L., Boumaza R., Vian A., Guérin V., Leduc N., Sakr S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010
Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009
Cavallaro V., Pellegrino A., Muleo R., Forgione I. 2022. Light and plant growth regulators on in vitro proliferation. Plants. 11 (7), 844. https://doi.org/10.3390/plants11070844
Article CAS PubMed PubMed Central Google Scholar
Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on morphogenetic processes in callus culture of wheat. Dokl. Akad. Nauk (Rus.). 376, 830–832.
Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on callusogenesis in wild cereals. Dokl. Akad. Nauk (Rus.). 379, 819–820.
Hernández-Aguilar C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R. 2010. Laser in agriculture. Int. Agrophys. 24, 407–422.
Gao L., Li Y-F., Z. Shen Z., Han R. 2018. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress. Protoplasma. 255 (3), 761–771. https://doi.org/10.1007/s00709-017-1184-y
Article CAS PubMed Google Scholar
Klimek-Kopyra A., Czech T. 2022. Complementary photostimulation of seeds and plants as an effective tool for increasing crop productivity and quality in light of new challenges facing agriculture in the 21st century—A case study. Plants. 11, 1649. https://doi.org/10.3390/plants11131649
Article CAS PubMed PubMed Central Google Scholar
Klimek-Kopyra A., Neugschwandtner R.W., Ślizowska A., Kot D., Dobrowolski J.W., Pilch Z., Dacewicz E. 2022. Pre-sowing laser light stimulation increases yield and protein and crude fat contents in soybean. Agriculture. 12, 1510. https://doi.org/10.3390/agriculture12101510
Korrani M.F., Amooaghaie R., Ahadi A. 2023. He–Ne laser enhances seed germination and salt acclimation in Salvia officinalis seedlings in a manner dependent on phytochrome and H2O2. Protoplasma. 260, 103–116. https://doi.org/10.1007/s00709-022-01762-1
Swathy P.S., Kiran K.R., Joshi M.B., Mahato K.K., Muthusamy A. 2021. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Sci. Rep. 11, 7948. https://doi.org/10.1038/s41598-021-86984-8
Article CAS PubMed PubMed Central Google Scholar
Salyaev P.K., Dudareva L.V., Lankevich S.V., Ekimova E.G., Sumtsova V.M. 2003. Effect of low-intensity laser radiation on lipid peroxidation processes in wheat tissue culture. Fiziol. Rastenii (Rus.). 50 (4), 498–500.
Ozolina N.V., Pradedova E.V., Dudareva L.V., S-alyaev R.K. 1997. Effect of low-intensity laser radiation on the hydrolytic activity of vacuolar membrane proton pumps. Biol. Membrany (Rus.). 14, 125–127.
Salyaev R. K., Dudareva L.V., Lankevich S.V., Makarenko S.P., Sumtsova V.M., Rudikovskaya E.G. 2007. Effect of low-intensity laser radiation on chemical composition and structure of lipids in wheat tissue culture. Dokl. Akad. Nauk (Rus.). 412 (3), 422–423.
Dudareva L.V., Rudikovskaya E.G., Shmakov V.N. 2014. Effect of low-intensity helium-neon laser radiation on fatty acid composition of wheat callus tissues (Triticum aestivum L.). Biol. Membrany (Rus.). 31 (5), 364–370. https://doi.org/10.7868/S0233475514050041
Dudareva L., Tarasenko V., Rudikovskaya E. 2020. Involvement of photoprotective compounds of a phenolic nature in the response of Arabidopsis thaliana leaf tissues to low-intensity laser radiation. Photochem. Photobiol. 96 (6), 1243–1250. https://doi.org/10.1111/php.13289
Article CAS PubMed Google Scholar
Hou Q., Ufer G., Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant, Cell and Environ. 39, 1029–1048. https://doi.org/10.1111/pce.12666
Munnik T., Irvine R.F., Musgrave A. 1998. Phospholipid signalling in plants. Biochim. Biophys. Acta. 1389, 222–272.
Article CAS PubMed Google Scholar
Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 343, 489–509. https://doi.org/10.1007/s11120-013-9823-4
Cassim A.M., Mongrand S. 2019. Lipids light up in plant membranes. Nat. Plants. 5, 913–914. https://doi.org/10.1038/s41477-019-0494-9
Zhukov A.V. 2021. On the qualitative composition of plant cell membrane lipids. Fiziol. Rastenii (Rus.). 68 (2), 206–224. https://doi.org/10.31857/S001533032101022X
Berg J.M., Tymoczko J.L., Stryer L. 2002. Biochemistry. 5th edition. New York: W.H. Freeman. https://doi.org/www.ncbi.nlm.nih.gov/books/NBK22361
Reszczyńska E., Hanaka A. 2020. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414. https://doi.org/10.1007/s12013-020-00947-w
Article CAS PubMed PubMed Central Google Scholar
Klyachko-Gurvich G.L., Tsoglin L.N., Doucha J., Kopetskii J., Ryabykh I.B.S., Semenenko V.E. 1999. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol. Plant. 107, 240–249. https://doi.org/10.1034/j.1399-3054.1999.100212.x
Ruelland E., KravetsV., Derevyanchuk M., Martinecc J., Zachowski A., Pokotylo I. 2015. Role of phospholipid signalling in plant environmental responses. Envir. Exp. Bot. 114, 129–143. https://doi.org/10.1016/j.envexpbot.2014.08.009
Heilmann I. 2016. Plant phosphoinositide signaling – dynamics on demand. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids. 1861 (9), 1345–1351. https://doi.org/10.1016/j.bbalip.2016.02.013
Lim G.H., Singhal R., Kachroo A., Kachroo P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Ann. Rev. Phytopathol. 55, 505–536. https://doi.org/10.1146/annurev-phyto-080516-035406
Pokotylo I., Kravets V., Martinecc J., Ruelland E. 2018. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71, 43–53. https://doi.org/10.1016/j.plipres.2018.05.003
Article CAS PubMed Google Scholar
Rogowska A., Szakiel A. 2020. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 19, 1525–1538. https://doi.org/10.1007/s11101-020-09708
Lu J., Xu Y., Wang J., Singer S.D., Chen G. 2020. The role of triacylglycerol in plant stress response. Plants. 9, 472. https://doi.org/10.3390/plants9040472
Article CAS PubMed PubMed Central Google Scholar
Banerjee A., Roychoudhury A. 2016. Plant responses to light stress: Oxidative damages, photoprotection, and role of phytohormones. In: Plant Hormones under Challenging Environmental Factors. Eds. Ahammed G., Yu J.Q. Dordrecht: Springer, p. 181–213. https://doi.org/10.1007/978-94-017-7758-2_8
Pascual J., Rahikainen M., Kangasjärvi S. 2017. Plant light stress. eLS. 1–6. https://doi.org/10.1002/9780470015902.a0001319.pub3
Roeber V.M., Bajaj I., Rohde M., Schmulling T., Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 44 (3), 645–664.
Comments (0)