Influence of Low-Intensive He-Ne Laser Radiation on the Composition and Content of Phospholipids and Sterols in the Callus Tissues of Wheat Тriticum aestivum L.

Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I. 2009. Transduction mechanisms of photoreceptor signals in plant cells. J. Photochem. Photobiol. C: Photochem. Rev. 10, 63–80.

Article  CAS  Google Scholar 

Kreslavski V.D., Fomina I.R., Los D.A., Carpentier R., Kuznetsov V.V., Allakhverdiev S.I. 2012. Red and near infra-red signaling: Hypothesis and perspectives. J. Photochem. Photobiol. 13, 190–203. https://doi.org/10.1016/j.jphotochemrev.2012.01.002

Article  CAS  Google Scholar 

Demotes-Mainard S., Péron T., Corot A., Bertheloot J., Gourrierec J.L., Pelleschi-Travier S., Crespel L., Mo-rel P., Huché-Thélier L., Boumaza R., Vian A., Guérin V., Leduc N., Sakr S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010

Article  CAS  Google Scholar 

Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009

Article  CAS  Google Scholar 

Cavallaro V., Pellegrino A., Muleo R., Forgione I. 2022. Light and plant growth regulators on in vitro proliferation. Plants. 11 (7), 844. https://doi.org/10.3390/plants11070844

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on morphogenetic processes in callus culture of wheat. Dokl. Akad. Nauk (Rus.). 376, 830–832.

CAS  Google Scholar 

Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. 2001. Effect of low-intensity coherent radiation on callusogenesis in wild cereals. Dokl. Akad. Nauk (Rus.). 379, 819–820.

CAS  Google Scholar 

Hernández-Aguilar C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R. 2010. Laser in agriculture. Int. Agrophys. 24, 407–422.

Google Scholar 

Gao L., Li Y-F., Z. Shen Z., Han R. 2018. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress. Protoplasma. 255 (3), 761–771. https://doi.org/10.1007/s00709-017-1184-y

Article  CAS  PubMed  Google Scholar 

Klimek-Kopyra A., Czech T. 2022. Complementary photostimulation of seeds and plants as an effective tool for increasing crop productivity and quality in light of new challenges facing agriculture in the 21st century—A case study. Plants. 11, 1649. https://doi.org/10.3390/plants11131649

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klimek-Kopyra A., Neugschwandtner R.W., Ślizowska A., Kot D., Dobrowolski J.W., Pilch Z., Dacewicz E. 2022. Pre-sowing laser light stimulation increases yield and protein and crude fat contents in soybean. Agriculture. 12, 1510. https://doi.org/10.3390/agriculture12101510

Article  CAS  Google Scholar 

Korrani M.F., Amooaghaie R., Ahadi A. 2023. He–Ne laser enhances seed germination and salt acclimation in Salvia officinalis seedlings in a manner dependent on phytochrome and H2O2. Protoplasma. 260, 103–116. https://doi.org/10.1007/s00709-022-01762-1

Article  CAS  Google Scholar 

Swathy P.S., Kiran K.R., Joshi M.B., Mahato K.K., Muthusamy A. 2021. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Sci. Rep. 11, 7948. https://doi.org/10.1038/s41598-021-86984-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salyaev P.K., Dudareva L.V., Lankevich S.V., Ekimova E.G., Sumtsova V.M. 2003. Effect of low-intensity laser radiation on lipid peroxidation processes in wheat tissue culture. Fiziol. Rastenii (Rus.). 50 (4), 498–500.

CAS  Google Scholar 

Ozolina N.V., Pradedova E.V., Dudareva L.V., S-alyaev R.K. 1997. Effect of low-intensity laser radiation on the hydrolytic activity of vacuolar membrane proton pumps. Biol. Membrany (Rus.). 14, 125–127.

CAS  Google Scholar 

Salyaev R. K., Dudareva L.V., Lankevich S.V., Makarenko S.P., Sumtsova V.M., Rudikovskaya E.G. 2007. Effect of low-intensity laser radiation on chemical composition and structure of lipids in wheat tissue culture. Dokl. Akad. Nauk (Rus.). 412 (3), 422–423.

Google Scholar 

Dudareva L.V., Rudikovskaya E.G., Shmakov V.N. 2014. Effect of low-intensity helium-neon laser radiation on fatty acid composition of wheat callus tissues (Triticum aestivum L.). Biol. Membrany (Rus.). 31 (5), 364–370. https://doi.org/10.7868/S0233475514050041

Article  CAS  Google Scholar 

Dudareva L., Tarasenko V., Rudikovskaya E. 2020. Involvement of photoprotective compounds of a phenolic nature in the response of Arabidopsis thaliana leaf tissues to low-intensity laser radiation. Photochem. Photobiol. 96 (6), 1243–1250. https://doi.org/10.1111/php.13289

Article  CAS  PubMed  Google Scholar 

Hou Q., Ufer G., Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant, Cell and Environ. 39, 1029–1048. https://doi.org/10.1111/pce.12666

Article  CAS  Google Scholar 

Munnik T., Irvine R.F., Musgrave A. 1998. Phospholipid signalling in plants. Biochim. Biophys. Acta. 1389, 222–272.

Article  CAS  PubMed  Google Scholar 

Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 343, 489–509. https://doi.org/10.1007/s11120-013-9823-4

Article  CAS  Google Scholar 

Cassim A.M., Mongrand S. 2019. Lipids light up in plant membranes. Nat. Plants. 5, 913–914. https://doi.org/10.1038/s41477-019-0494-9

Article  Google Scholar 

Zhukov A.V. 2021. On the qualitative composition of plant cell membrane lipids. Fiziol. Rastenii (Rus.). 68 (2), 206–224. https://doi.org/10.31857/S001533032101022X

Article  Google Scholar 

Berg J.M., Tymoczko J.L., Stryer L. 2002. Biochemistry. 5th edition. New York: W.H. Freeman. https://doi.org/www.ncbi.nlm.nih.gov/books/NBK22361

Google Scholar 

Reszczyńska E., Hanaka A. 2020. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414. https://doi.org/10.1007/s12013-020-00947-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klyachko-Gurvich G.L., Tsoglin L.N., Doucha J., Kopetskii J., Ryabykh I.B.S., Semenenko V.E. 1999. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol. Plant. 107, 240–249. https://doi.org/10.1034/j.1399-3054.1999.100212.x

Article  CAS  Google Scholar 

Ruelland E., KravetsV., Derevyanchuk M., Martinecc J., Zachowski A., Pokotylo I. 2015. Role of phospholipid signalling in plant environmental responses. Envir. Exp. Bot. 114, 129–143. https://doi.org/10.1016/j.envexpbot.2014.08.009

Article  CAS  Google Scholar 

Heilmann I. 2016. Plant phosphoinositide signaling – dynamics on demand. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids. 1861 (9), 1345–1351. https://doi.org/10.1016/j.bbalip.2016.02.013

Lim G.H., Singhal R., Kachroo A., Kachroo P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Ann. Rev. Phytopathol. 55, 505–536. https://doi.org/10.1146/annurev-phyto-080516-035406

Article  CAS  Google Scholar 

Pokotylo I., Kravets V., Martinecc J., Ruelland E. 2018. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71, 43–53. https://doi.org/10.1016/j.plipres.2018.05.003

Article  CAS  PubMed  Google Scholar 

Rogowska A., Szakiel A. 2020. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 19, 1525–1538. https://doi.org/10.1007/s11101-020-09708

Article  CAS  Google Scholar 

Lu J., Xu Y., Wang J., Singer S.D., Chen G. 2020. The role of triacylglycerol in plant stress response. Plants. 9, 472. https://doi.org/10.3390/plants9040472

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee A., Roychoudhury A. 2016. Plant responses to light stress: Oxidative damages, photoprotection, and role of phytohormones. In: Plant Hormones under Challenging Environmental Factors. Eds. Ahammed G., Yu J.Q. Dordrecht: Springer, p. 181–213. https://doi.org/10.1007/978-94-017-7758-2_8

Pascual J., Rahikainen M., Kangasjärvi S. 2017. Plant light stress. eLS. 1–6. https://doi.org/10.1002/9780470015902.a0001319.pub3

Roeber V.M., Bajaj I., Rohde M., Schmulling T., Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 44 (3), 645–664.

Comments (0)

No login
gif