Changes in Histone Code Regulation during the Initiation of Paraptosis-Like Death of HEp-2 Tumor Cells by Oxidized Disulfiram Derivatives

Cohen I., Poręba E., Kamieniarz K., Schneider R. 2011. Histone modifiers in cancer: Friends or foes? Genes Cancer. 2 (6), 631–647. https://doi.org/10.1177/1947601911417176

Article  CAS  PubMed  PubMed Central  Google Scholar 

Audia J.E., Campbell R.M. Histone modifications and cancer. 2016. Cold Spring Harb. Perspect. Biol. 8 (4), a019521. https://doi.org/10.1101/cshperspect.a019521

Article  PubMed  PubMed Central  Google Scholar 

Karpenko D.V., Petinati N.A., Drize N.J., Bigildeev A.E. 2021. The Role of epigenetic modifications of DNA and histones in the treatment of oncohematological diseases. Rus. J. Hematol. Transfusiol. (Rus.). 66 (2), 263–279. https://doi.org/10.35754/0234-5730-2021-66-2-263-279

Article  Google Scholar 

Oss-Ronen L., Sarusi T., Cohen I. 2022. Histone mono-ubiquitination in transcriptional regulation and its mark on life: Emerging roles in tissue development and disease. Cells. 11 (15), 2404. https://doi.org/10.3390/cells11152404

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudriaeva A.A., Lipkin V.M., Belogurov A.A. Jr. 2020. Topological features of histone H2A monoubiquitination. Dokl. Biochem. Biophys. (Rus.). 493 (1), 193–197. https://doi.org/10.1134/S1607672920040079

Article  CAS  Google Scholar 

Bacheva A.V., Gotmanova N.N., Belogurov A.A., Kudriaeva A.A. 2021. Control of genome through variative nature of histone-modifying ubiquitin ligases. Biochemistry (Mosc). 86 (Suppl. 1), S71–S95. https://doi.org/10.1134/S0006297921140066

Article  CAS  PubMed  Google Scholar 

Shen E., Shulha H., Weng Z., Akbarian S. 2014. Regulation of histone H3K4 methylation in brain development and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (1652), 213–514. https://doi.org/10.1098/rstb.2013.0514

Article  CAS  Google Scholar 

Wang J., Qiu Z., Wu Y. 2018. Ubiquitin regulation: The histone modifying enzyme′s story. Cells. 7 (9), 118. https://doi.org/10.3390/cells7090118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Lomovskaya Y., Pankratov A., Pankratova N., Buneeva O., Kopylov A., Medvedev A., Akatov V. 2022. Disulfiram oxy-derivatives suppress protein retrotranslocation across the ER membrane to the cytosol and initiate paraptosis-like cell death. Membranes. 12 (9), 845. https://doi.org/10.3390/membranes12090845

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimazu S., Takahata K., Tamashiro A., Yoneda F., Iida Y., Saji H. 2003. Recovery of motor function and dopaminergic parameters in a mouse model of Parkinson’s disease induced by co-administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and diethyldithiocarbamate. J. Neural. Transm. 110, 871–883.https://doi.org/10.1007/s00702-003-0002-1

Article  CAS  PubMed  Google Scholar 

Yang C.-H., Fang I.-M., Lin C.-P., Yang C.-M., Chen M.-S. 2005. Effects of the NF-κB inhibitor pyrrolidine dithiocarbamate on experimentally induced autoimmune anterior uveitis. Invest. Ophthalmol. Vis. Sci. 46, 1339–1347.https://doi.org/10.1167/iovs.04-0640

Article  PubMed  Google Scholar 

Castillo-Villanueva A., Rufino-González Y., Méndez S.T., Torres-Arroyo A., Ponce-Macotela M., Martínez-Gordillo M.N., Reyes-Vivas H., Oria-Hernández J. 2017. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential. Int. J. Parasitol. Drugs. Drug Resist. 7 (3), 425–432. https://doi.org/10.1016/j.ijpddr.2017.11.003

Article  PubMed  PubMed Central  Google Scholar 

Liegner K.B. 2019. Disulfiram (tetraethylthiuram disulfide) in the treatment of Lyme disease and babesiosis: Report of experience in three cases. Antibiotics. 8 (2), 72. https://doi.org/10.3390/antibiotics8020072

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing S., Bullen C.K., Shroff N.S., Shan L., Yang H.C., Manucci J.L., Bhat S., Zhang H., Margolick J.B., Quinn T.C., Margolis D.M., Siliciano J.D., Siliciano R.F. 2011. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J. Virol. 85, 6060–6064. https://doi.org/10.1128/jvi.02033-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu T., Wang P., Cong M., Zhao X., Zhang D., Xu H., Liu L., Jia J., You H. 2018. Diethyldithiocarbamate, an anti-abuse drug, alleviates steatohepatitis and fibrosis in rodents through modulating lipid metabolism and oxidative stress. Br. J. Pharmacol. 175, 4480–4495. https://doi.org/10.1111/bph.14503

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakola A.S., Werlenius K., Mudaisi M., Hylin S., Kinhult S., Bartek J. Jr, Salvesen Ø., Carlsen S.M., Strandéus M., Lindskog M., Löfgren D., Rydenhag B., Carstam L., Gulati S., Solheim O., Bartek J., Solheim T. 2018. Disulfiram repurposing combined with nutritional copper supplement as add-on to chemotherapy in recurrent glioblastoma (DIRECT): Study protocol for a randomized controlled trial. F1000Res. 15, 1797. https://doi.org/10.12688/f1000research.16786

Article  Google Scholar 

Kita Y., Hamada A., Saito R., Teramoto Y., Tanaka R., Takano K., Nakayama K., Murakami K., Matsumoto K., Akamatsu S., Yamasaki T, Inoue T., Tabata Y., Okuno Y., Ogawa O., Kobayashi T. 2019. Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: A summary of preclinical studies. Br. J. Cancer. 121, 1027–1038. https://doi.org/10.1038/s41416-019-0609-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ekinci E., Rohondia S., Khan R., Dou Q.P. 2019. Repurposing disulfiram as an anti-cancer agent: Updated review on literature and patents. Recent Pat. Anticancer Drug Discov. 14, 113–132. https://doi.org/10.2174/1574892814666190514104035

Article  CAS  PubMed  Google Scholar 

Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Mishukov A., Lomovskaya Y., Pavlik L., Mikheeva I., Holmuhamedov E., Akatov V. 2022. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim. Biophys. Acta Gen. Subj. 1866, 130184. https://doi.org/10.1016/j.bbagen.2022.130184

Burger A., Amemiya Y., Kitching R., Seth A.K. 2006. Novel RING E3 ubiquitin ligases in breast cancer. Neoplasia. 8, 689–695. https://doi.org/10.1593/neo.06469

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kona F.R., Buac D., Burger A.M. 2011. Disulfiram, and disulfiram derivatives as novel potential anticancer drugs targeting the ubiquitin-proteasome system in both preclinical and clinical studies. Curr. Cancer Drug Targets. 11, 338–346. https://doi.org/10.2174/156800911794519798

Article  CAS  PubMed  Google Scholar 

Chen D., Cui Q.C., Yang H., Dou Q.P. 2006. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 66, 10 425–10 433. https://doi.org/10.1158/0008-5472.CAN-06-2126

Article  Google Scholar 

Huang H., Liao Y., Liu N., Hua X., Cai J., Yang C., Long H., Zhao C., Chen X., Lan X. et al. 2016. Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects in vitro and in vivo. Oncotarget. 19, 2796–2808. https://doi.org/10.18632/oncotarget.6425

Article  Google Scholar 

Lövborg H., Oberg F., Rickardson L., Gullbo J., Nygren P., Larsson R. 2006. Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram. Int. J. Cancer. 118 (6), 1577–1580. https://doi.org/10.1002/ijc.21534

Article  CAS  PubMed  Google Scholar 

Kumari N., Jaynes P.W., Saei A., Iyengar P.V., Ric-hard J.L.C., Eichhorn P.J.A. 2017. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim. Biophys. Acta Rev. Cancer. 1868, 456–483. https://doi.org/10.1016/j.bbcan.2017.09.002

Article  CAS  PubMed  Google Scholar 

Buneeva O., Kopylov A., Kapitsa I., Ivanova E., Zgoda V., Medvedev A. 2018. The effect of neurotoxin MPTP and neuroprotector isatin on the profile of ubiquitinated brain mitochondrial proteins. Cells. 7 (8), 91. https://doi.org/10.3390/cells7080091

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shatalin Y. 2022. Analysis of human carcinoma HEp-2 cell ubiquitome during the initiation of paraptosis-like death by disulfiram oxy-derivatives. Mendeley Data, V1. https://doi.org/10.17632/fjjtrfv5rv.1 https://data.mendeley.com/datasets/fjjtrfv5rv/1

Comments (0)

No login
gif