El-Metwally MM, Mekawey AAI, El-Halmouch Y, Naga NG (2023) Symbiotic relationships with Fungi: from mutualism to Parasitism. Plant Mycobiome: diversity, interactions and uses. Springer, pp 375–413
Naga NG, El-Badan DE-S, Rateb HS et al (2021) Quorum Sensing Inhibiting Activity of Cefoperazone and its Metallic Derivatives on Pseudomonas aeruginosa Frontiers in Cellular and Infection Microbiology 945. https://doi.org/10.3389/fcimb.2021.716789
Naga NG, El-Badan DE, Ghanem KM, Shaaban MI (2023) It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Communication Signal 21:133. https://doi.org/10.1186/s12964-023-01154-9
Horinouchi S (1999) γ-Butyrolactones that control secondary metabolism and cell differentiation in Streptomyces. Cell-cell Signal Bacteria 193–207
Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275. https://doi.org/10.1128/jb.176.2.269-275.1994
Article CAS PubMed PubMed Central Google Scholar
Tiaden A, Hilbi H (2012) α-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors 12:2899–2919. https://doi.org/10.3390/s120302899
Article CAS PubMed PubMed Central Google Scholar
Deng Y, Wu J, Tao F, Zhang L-H (2011) Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 111:160–173. https://doi.org/10.1021/cr100354f
Article CAS PubMed Google Scholar
Miller MB, Skorupski K, Lenz DH et al (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314. https://doi.org/10.1016/s0092-8674(02)00829-2
Article CAS PubMed Google Scholar
Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132. https://doi.org/10.1128/jb.179.10.3127-3132.1997
Article CAS PubMed PubMed Central Google Scholar
Dubern J-F, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888. https://doi.org/10.1039/b803796p
Article CAS PubMed Google Scholar
Chu P-L, Feng Y-M, Long Z-Q et al (2023) Novel benzothiazole derivatives as potential anti-quorum sensing agents for managing plant bacterial diseases: synthesis, antibacterial activity assessment, and SAR study. J Agric Food Chem 71:6525–6540. https://doi.org/10.1021/acs.jafc.2c07810
Article CAS PubMed Google Scholar
Tang K, Zhang X-H (2014) Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 12:3245–3282. https://doi.org/10.3390/md12063245
Article CAS PubMed PubMed Central Google Scholar
Park J, Jagasia R, Kaufmann GF et al (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127. https://doi.org/10.1016/j.chembiol.2007.08.013
Article CAS PubMed PubMed Central Google Scholar
Fetzner S (2015) Quorum quenching enzymes. J Biotechnol 201:2–14. https://doi.org/10.1016/j.jbiotec.2014.09.001
Article CAS PubMed Google Scholar
Rasmussen TB, Bjarnsholt T, Skindersoe ME et al (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814. https://doi.org/10.1128/JB.187.5.1799-1814.2005
Article CAS PubMed PubMed Central Google Scholar
Naga NG, Zaki AA, El-Badan DE et al (2022) Methoxyisoflavan derivative from Trigonella Stellata inhibited quorum sensing and virulence factors of Pseudomonas aeruginosa. World J Microbiol Biotechnol 38:1–13. https://doi.org/10.1007/s11274-022-03337-x
El-Mowafy SA, Abd El Galil KH, El-Messery SM, Shaaban MI (2014) Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb Pathog 74:25–32. https://doi.org/10.1016/j.micpath.2014.07.008
Article CAS PubMed Google Scholar
El-Mowafy SA, Abd El Galil KH, Habib E-SE, Shaaban MI (2017) Quorum sensing inhibitory activity of sub-inhibitory concentrations of β-lactams. Afr Health Sci 17:199–207. https://doi.org/10.4314/ahs.v17i1.25
Article PubMed PubMed Central Google Scholar
Nalca Y, Jänsch L, Bredenbruch F et al (2006) Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrobial agents and chemotherapy 50:1680–1688. https://doi.org/10.1128/AAC.50.5.1680-1688.2006.
Gabr MT, El-Gohary NS, El-Bendary ER, (2015) Synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of new series of benzothiazole derivatives. Chinese Chemical Letters 26:1522–1528
Lin Y, Xu J, Hu J et al (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum‐quenching enzymes. Mol Microbiol 47:849–860. https://doi.org/10.1046/j.1365-2958.2003.03351.x
Czajkowski R, Krzyżanowska D, Karczewska J et al (2011) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3:59–68. https://doi.org/10.1111/j.1758-2229.2010.00188.x
Article CAS PubMed Google Scholar
Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:1190–1197. https://doi.org/10.1128/AEM.72.2.1190-1197.2006
Article CAS PubMed PubMed Central Google Scholar
Park S-Y, Kang H-O, Jang H-S et al (2005) Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641. https://doi.org/10.1128/AEM.71.5.2632-2641.2005
Article CAS PubMed PubMed Central Google Scholar
Dong Y-H, Wang L-H, Xu J-L et al (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. https://doi.org/10.1038/35081101
Article CAS PubMed Google Scholar
Park S-Y, Lee SJ, Oh T-K et al (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541–1550. https://doi.org/10.1099/mic.0.26269-0
Article CAS PubMed Google Scholar
Uroz S, Heinonsalo J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol 65:271–278. https://doi.org/10.1111/j.1574-6941.2008.00477.x
Article CAS PubMed Google Scholar
Camps J, Pujol I, Ballester F et al (2011) Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrob Agents Chemother 55:1325–1331. https://doi.org/10.1128/AAC.01502-10
Article CAS PubMed PubMed Central Google Scholar
Faisal AJ, Said LA, Ali MR (2021) Quorum quenching effect of recombinant Paraoxonase-1 enzyme against Quorum sensing genes produced from Pseudomonas aeruginosa. Gene Rep 101412DOI. https://doi.org/10.1016/j.genrep.2021.101412
Bzdrenga J, Daudé D, Remy B et al (2017) Biotechnological applications of quorum quenching enzymes. Chemico-Biol Interact 267:104–115. https://doi.org/10.1016/j.cbi.2016.05.028
Shirazi J, Ain Q, Khan SJ et al (2021) Targeting Acyl Homoserine lactones (AHLs) by the Quorum quenching bacterial strains to Control Biofilm formation in Pseudomonas Aeruginosa. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2021.10.064
Wang N, Jian W, Liang H et al (2024) Engineering a biomimicking strategy for discovering nonivamide-based quorum-sensing inhibitors for controlling bacterial infection. Eur J Med Chem 275:116609. https://doi.org/10.1016/j.ejmech.2024.116609
Comments (0)