Antonelli, L. R. et al. The immunology of Plasmodium vivax malaria. Immunol. Rev. 293, 163–189 (2020).
Article CAS PubMed Google Scholar
World Health Organization. World Malaria Report 2023 (WHO, 2023).
Singh, B. et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024 (2004).
Millar, S. B. & Cox-Singh, J. Human infections with Plasmodium knowlesi–zoonotic malaria. Clin. Microbiol. Infect. 21, 640–648 (2015).
Article CAS PubMed Google Scholar
Cheaveau, J. et al. Asymptomatic malaria in the clinical and public health context. Expert Rev. Anti Infect. Ther. 17, 997–1010 (2019).
Article CAS PubMed Google Scholar
Shretta, R. et al. in Disease Control Priorities: Major Infectious Diseases 3rd edn, Vol. 6 315–346 (World Bank Publications, 2017).
Fowkes, F. J. I., Davidson, E., Moore, K. A., McGready, R. & Simpson, J. A. The invisible burden of malaria-attributable stillbirths. Lancet 395, 268 (2020).
Bardaji, A. et al. Impact of malaria at the end of pregnancy on infant mortality and morbidity. J. Infect. Dis. 203, 691–699 (2011).
Article PubMed PubMed Central Google Scholar
Katz, J. et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 382, 417–425 (2013).
Article PubMed PubMed Central Google Scholar
Gallup, J. L. & Sachs, J. D. The economic burden of malaria. Am. Soc. Trop. Med. Hyg. 64, 85–96 (2001).
UNRIC. Malaria: a disease of poverty. UNRIC https://unric.org/en/malaria-a-disease-of-poverty/ (2023).
Sachs, J. & Malaney, P. The economic and social burden of malaria. Nature 415, 680–685 (2002).
Article CAS PubMed Google Scholar
Woodrow, C. J. & White, N. J. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol. Rev. 41, 34–48 (2017).
Article CAS PubMed PubMed Central Google Scholar
World Health Organization. Global Database on Antimalarial Drug Efficacy and Resistance (WHO, accessed 1 October 2023); https://www.who.int/teams/global-malaria-programme/case-management/drug-efficacy-and-resistance/antimalarial-drug-efficacy-database.
World Health Organization. Global Report on Insecticide Resistance in Malaria Vectors: 2010–2016 (WHO, 2018).
Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar. J. 12, 56 (2013).
Article PubMed PubMed Central Google Scholar
World Health Organization. Mosquito on the move: a new WHO initiative takes aim at Anopheles stephensi, an invasive malarial mosquito species that thrives in cities and is expanding across Africa. WHO https://www.who.int/news-room/feature-stories/detail/mosquito-on-the-move (2022).
World Health Organization. Malaria Eradication: Benefits, Future Scenarios & Feasibility (WHO, 2020).
World Health Organization. WHO recommends groundbreaking malaria vaccine for children at risk. WHO https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk (2021).
RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).
RTS,S Clinical Trials Partnership. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365, 1863–1875 (2011).
Wadman, M. First malaria vaccines slashes early childhood mortality. Science https://www.science.org/content/article/first-malaria-vaccine-slashes-early-childhood-deaths (2023).
Oxford R21/Matrix-M™ malaria vaccine receives WHO recommendation for use paving the way for global roll-out. University of Oxford https://www.ox.ac.uk/news/2023-10-02-oxford-r21matrix-m-malaria-vaccine-receives-who-recommendation-use-paving-way-global (2023).
Datoo, M. S. et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet 403, 533–544 (2024).
Article CAS PubMed Google Scholar
Half a million children die of malaria every year. Finally we can change that. Nature 622, 218 (2023).
Graumans, W., Jacobs, E., Bousema, T. & Sinnis, P. When is a Plasmodium-infected mosquito an infectious mosquito? Trends Parasitol. 36, 705–716 (2020).
Article CAS PubMed PubMed Central Google Scholar
Baer, K., Klotz, C., Kappe, S. H., Schnieder, T. & Frevert, U. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog. 3, e171 (2007).
Article PubMed PubMed Central Google Scholar
Vaughan, A. M. et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J. Clin. Invest. 122, 3618–3628 (2012).
Article CAS PubMed PubMed Central Google Scholar
Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006).
Article CAS PubMed Google Scholar
Dondorp, A. M. et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2, e204 (2005).
Article PubMed PubMed Central Google Scholar
Hirai, M. in Sexual Reproduction in Animals and Plants (eds Sawada, H., Inoue, N. & Iwano, M.) Ch. 27 (Springer, 2014).
Kappe, S. H., Kaiser, K. & Matuschewski, K. The Plasmodium sporozoite journey: a rite of passage. Trends Parasitol. 19, 135–143 (2003).
Gordon, D. M. et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J. Infect. Dis. 171, 1576–1585 (1995).
Article CAS PubMed Google Scholar
Stoute, J. A. et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Engl. J. Med. 336, 86–91 (1997).
Article CAS PubMed Google Scholar
Gaudinski, M. R. et al. A monoclonal antibody for malaria prevention. N. Engl. J. Med. 385, 803–814 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lyke, K. E. et al. Low-dose intravenous and subcutaneous CIS43LS monoclonal antibody for protection against malaria (VRC 612 Part C): a phase 1, adaptive trial. Lancet Infect. Dis. 23, 578–588 (2023).
Article CAS PubMed Google Scholar
Wu, R. L. et al. Low-dose subcutaneous or intravenous monoclonal antibody to prevent malaria. N. Engl. J. Med. 387, 397–407 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sirima, S. B. et al. A randomized controlled trial showing safety and efficacy of a whole sporozoite vaccine against endemic malaria. Sci. Transl. Med. 14, eabj3776 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sissoko, M. S. et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect. Dis. 17, 498–509 (2017).
Article CAS PubMed PubMed Central Google Scholar
Sissoko, M. S. et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. Lancet Infect. Dis. 22, 377–389 (2022).
Article CAS PubMed Google Scholar
Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).
Comments (0)