Jelliffe, D. B. & Jelliffe, E. F. The infant food industry and international child health. Int. J. Health Serv. 7, 249–254 (1977).
Article CAS PubMed Google Scholar
Cleave, T. L. Over-consumption, now the most dangerous cause of disease in westernized countries. Public Health 91, 127–131 (1977).
Article CAS PubMed Google Scholar
Olson, R. E. Diet and coronary artery disease. Circulation 22, 453–463 (1960).
Article CAS PubMed Google Scholar
Eaton, S. B. & Konner, M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312, 283–289 (1985).
Article CAS PubMed Google Scholar
Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).
NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 569, 260–264 (2019).
Article PubMed Central Google Scholar
Ye, Y. & Leeming, J. By the numbers: China’s changing diet. Nature https://doi.org/10.1038/d41586-023-02060-3 (2023).
Zhou, M. et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 394, 1145–1158 (2019).
Article PubMed PubMed Central Google Scholar
Hambleton, I. R., Caixeta, R., Jeyaseelan, S. M., Luciani, S. & Hennis, A. J. M. The rising burden of non-communicable diseases in the Americas and the impact of population aging: a secondary analysis of available data. Lancet Reg. Health Am. 21, 100483 (2023).
PubMed PubMed Central Google Scholar
Diseases, G. B. D. & Injuries, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).
Labonte, R. & Gagnon, M. L. Framing health and foreign policy: lessons for global health diplomacy. Global Health 6, 14 (2010).
Article PubMed PubMed Central Google Scholar
Dai, X. et al. Health effects associated with smoking: a burden of proof study. Nat. Med. 28, 2045–2055 (2022).
Article CAS PubMed PubMed Central Google Scholar
Samarasekera, U. WHO’s ninth report on the global tobacco epidemic. Lancet Oncol. 24, 957 (2023).
Mozaffarian, D., Katan, M. B., Ascherio, A., Stampfer, M. J. & Willett, W. C. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 354, 1601–1613 (2006).
Article CAS PubMed Google Scholar
Brandt, E. J., Myerson, R., Perraillon, M. C. & Polonsky, T. S. Hospital admissions for myocardial infarction and stroke before and after the trans-fatty acid restrictions in New York. JAMA Cardiol. 2, 627–634 (2017).
Article PubMed PubMed Central Google Scholar
Brownell, K. D. & Pomeranz, J. L. The trans-fat ban—food regulation and long-term health. N. Engl. J. Med. 370, 1773–1775 (2014).
Article CAS PubMed Google Scholar
Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).
Article CAS PubMed PubMed Central Google Scholar
Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021).
Article CAS PubMed PubMed Central Google Scholar
Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).
Article CAS PubMed Google Scholar
Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).
Article CAS PubMed PubMed Central Google Scholar
Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).
Article CAS PubMed PubMed Central Google Scholar
Vatanen, T. et al. Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism. Cell 185, 4921–4936 (2022).
Article CAS PubMed PubMed Central Google Scholar
Baumann-Dudenhoeffer, A. M., D’Souza, A. W., Tarr, P. I., Warner, B. B. & Dantas, G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat. Med. 24, 1822–1829 (2018).
Article CAS PubMed PubMed Central Google Scholar
Howard, A. G. et al. Socioeconomic gradients in the Westernization of diet in China over 20 years. SSM Popul. Health 16, 100943 (2021).
Article PubMed PubMed Central Google Scholar
Delannoy-Bruno, O. et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).
Article CAS PubMed PubMed Central Google Scholar
Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134–142 (2022).
Article CAS PubMed PubMed Central Google Scholar
Maixner, F. et al. Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period. Curr. Biol. 31, 5149–5162 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wibowo, M. C. et al. Reconstruction of ancient microbial genomes from the human gut. Nature 594, 234–239 (2021).
Article CAS PubMed PubMed Central Google Scholar
Olm, M. R. et al. Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. Science 376, 1220–1223 (2022).
Article CAS PubMed PubMed Central Google Scholar
Schnorr, S. L. et al. Gut microbiome of the Hadza hunter–gatherers. Nat. Commun. 5, 3654 (2014).
Article CAS PubMed Google Scholar
Carter, M. M. et al. Ultra-deep sequencing of Hadza hunter–gatherers recovers vanishing gut microbes. Cell 186, 3111–3124 (2023).
Article PubMed PubMed Central Google Scholar
Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).
Comments (0)