Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016). This article describes the general approach of various orders of modelling in the context of cardiovascular physiology and disease.
International Civil Aviation Organization. Manual of Civil Aviation Medicine. 3rd edn Ch. III-1-1. Doc. 8984 (ICAO, 2012).
International Air Transport Association. IATA Medical Manual for Aviation. 12th edn Ch. 6.1.6 (IATA, 2020).
Federal Aviation Administration. Human space flight. FAA www.faa.gov/space/human_spaceflight (2024).
Space Industry Act 2018. Legislation.gov.uk www.legislation.gov.uk/ukpga/2018/5/contents (2024).
The Space Industry Regulations 2021. Legislation.gov.uk www.legislation.gov.uk/uksi/2021/792/contents (2024).
Spalart, P. R. & Venkatakrishnan, V. On the role and challenges of CFD in the aerospace industry. Aeronautical J. 120, 209–232 (2016).
Sjostrand, T. Volume and distribution of blood and their significance in regulating the circulation. Physiol. Rev. 33, 202–228 (1953).
Article CAS PubMed Google Scholar
Maw, G. J., Mackenzie, I. L. & Taylor, N. A. Redistribution of body fluids during postural manipulations. Acta Physiol. Scand. 155, 157–163 (1995).
Article CAS PubMed Google Scholar
Leverett, S. D. Jr, Burton, R. R., Crossley, R. J., Michaelson, E. D. & Shubrooks, S. J. Jr. Physiologic responses to high, sustained +Gz acceleration. Defense Technical Information Center. apps.dtic.mil/sti/citations/AD0777604 (1973).
Howard, P. in A Textbook of Aviation Physiology (ed. Gillies, J. A.) 551–687 (Pergamon Press, 1965).
McKenzie, I. & Gillingham, K. K. Incidence of cardiac dysrhythmias occurring during centrifuge training. Aviat. Space Environ. Med. 64, 687–691 (1993).
Whinnery, A. M., Whinnery, J. E. & Hickman, J. R. High +Gz centrifuge training: the electrocardiographic response to +Gz-induced loss of consciousness. Aviat. Space Environ. Med. 61, 609–614 (1990).
Wang, Y. X., Xu, L., Wei, W. B. & Jonas, J. B. Intraocular pressure and its normal range adjusted for ocular and systemic parameters. The Beijing Eye Study 2011. PLoS ONE 13, e0196926 (2018).
Article PubMed PubMed Central Google Scholar
Cochran, L. B., Gard, P.W. & Norsworthy, M. E. Variations in Human G Tolerance to Positive Acceleration (US Naval School of Aviation Medicine, 1954).
Whinnery, T., Forster, E. M. & Rogers, P. B. The +Gz recovery of consciousness curve. Extrem. Physiol. Med. 3, 9 (2014).
Article PubMed PubMed Central Google Scholar
Tripp, L. D. et al. +Gz acceleration loss of consciousness: time course of performance deficits with repeated experience. Hum. Factors 48, 109–120 (2006).
Whinnery, T. & Forster, E. M. The +Gz-induced loss of consciousness curve. Extrem. Physiol. Med. 2, 19 (2013).
Article PubMed PubMed Central Google Scholar
Green, N. D. C. in Ernsting’s Aviation Medicine Ch. 7 (eds Gradwell, D. P. & Rainford, D.) 131–156 (CRC Press, 2016).
Nishida, Y. et al. Effects and biological limitations of +Gz acceleration on the autonomic functions-related circulation in rats. J. Physiol. Sci. 66, 447–462 (2016).
Article PubMed PubMed Central Google Scholar
Eiken, O., Keramidas, M. E., Taylor, N. A. & Gronkvist, M. Intraocular pressure and cerebral oxygenation during prolonged headward acceleration. Eur. J. Appl. Physiol. 117, 61–72 (2017).
Article CAS PubMed Google Scholar
Park, M., Yoo, S., Seol, H., Kim, C. & Hong, Y. Unpredictability of fighter pilots’ g duration tolerance by anthropometric and physiological characteristics. Aerosp. Med. Hum. Perform. 86, 397–401 (2015).
Webb, J. T., Oakley, C. J. & Meeker, L. J. Unpredictability of fighter pilot G tolerance using anthropometric and physiologic variables. Aviat. Space Environ. Med. 62, 128–135 (1991).
Tu, M. Y. et al. Roles of physiological responses and anthropometric factors on the gravitational force tolerance for occupational hypergravity exposure. Int. J. Environ. Res. Public. Health 17, 8061 (2020).
Article PubMed PubMed Central Google Scholar
Nunneley, S. A. & Stribley, R. F. Heat and acute dehydration effects on acceleration response in man. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 47, 197–200 (1979).
Mills, W. D., Greenhaw, R. M. & Wang, J. M. P. A medical review of fatal high-G U.S. aerobatic accidents. Aerosp. Med. Hum. Perform. 90, 959–965 (2019).
Eiken, O., Mekjavic, I., Sundblad, P. & Kolegard, R. G tolerance vis-a-vis pressure-distension and pressure-flow relationships of leg arteries. Eur. J. Appl. Physiol. 112, 3619–3627 (2012).
Sundblad, P., Kolegard, R., Migeotte, P. F., Deliere, Q. & Eiken, O. The arterial baroreflex and inherent G tolerance. Eur. J. Appl. Physiol. 116, 1149–1157 (2016).
Pollock, R. D. et al. Hemodynamic responses and G protection afforded by three different anti-G systems. Aerosp. Med. Hum. Perform. 90, 925–933 (2019).
Shubrooks, S. J. Jr Positive-pressure breathing as a protective technique during +Gz acceleration. J. Appl. Physiol. 35, 294–298 (1973).
Glaister, D. H. The Effects of Gravity and Acceleration on the Lung. The Advisory Group for Aerospace Research and Development (NATO, 1970).
Ryan, E. A., Kerr, W. K. & Franks, W. R. Some physiological findings on normal men subjected to negative g. J. Aviat. Med. 21, 173–194 (1950).
Lehr, A. K. et al. Previous exposure to negative Gz reduces relaxed +Gz tolerance. Aviat. Space Environ. Med. 63, 405 (1992).
Prior, A. R. J., Adcock, T. R. & McCarthy, G. W. In-flight arterial blood pressure changes during −Gz to +Gz manoeuvring. Aviat. Space Environ. Med. 64, 428 (1993).
Menden, T. et al. Dynamic lung behavior under high G acceleration monitored with electrical impedance tomography. Physiol. Meas. 42, 094001 (2021).
Pollock, R. D. et al. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp. Med. Hum. Perform. 92, 633–641 (2021).
Sandler, H. Cineradiographic observations of human subjects during transverse accelerations of +5Gx and +10Gx. Aerosp. Med. 37, 445–448 (1966).
Lindberg, E. F., Marshall, H. W., Sutterer, W. F., Mc, G. T. & Wood, E. H. Studies of cardiac output and circulatory pressures in human beings during forward acceleration. Aerosp. Med. 33, 81–91 (1962).
Rogge, J. D., Meyer, J. F. & Brown, W. K. Comparison of the incidence of cardiac arrhythmias during +Gx acceleration, treadmill exercise and tilt table testing. Aerosp. Med. 40, 1–5 (1969).
Suresh, R., Blue, R. S., Mathers, C. H., Castleberry, T. L. & Vanderploeg, J. M. Dysrhythmias in laypersons during centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 88, 1008–1015 (2017).
Torphy, D. E., Leverett, S. D. Jr & Lamb, L. E. Cardiac arrhythmias occurring during acceleration. Aerosp. Med. 37, 52–58 (1966).
Pollock, R. D., Hodkinson, P. D., Smith, T. G. & Oh, G. The x, y and z of human physiological responses to acceleration. Exp. Physiol. 106, 2367–2384 (2021).
Smith, T. G. et al. Physiological effects of centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 93, 830–839 (2022).
Blue, R. S., Riccitello, J. M., Tizard, J., Hamilton, R. J. & Vanderploeg, J. M. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviat. Space Environ. Med. 83, 929–934 (2012).
Blue, R. S. et al. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition. Aviat. Space Environ. Med. 85, 721–729 (2014).
Comments (0)