Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight

Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016). This article describes the general approach of various orders of modelling in the context of cardiovascular physiology and disease.

Article  PubMed  Google Scholar 

International Civil Aviation Organization. Manual of Civil Aviation Medicine. 3rd edn Ch. III-1-1. Doc. 8984 (ICAO, 2012).

International Air Transport Association. IATA Medical Manual for Aviation. 12th edn Ch. 6.1.6 (IATA, 2020).

Federal Aviation Administration. Human space flight. FAA www.faa.gov/space/human_spaceflight (2024).

Space Industry Act 2018. Legislation.gov.uk www.legislation.gov.uk/ukpga/2018/5/contents (2024).

The Space Industry Regulations 2021. Legislation.gov.uk www.legislation.gov.uk/uksi/2021/792/contents (2024).

Spalart, P. R. & Venkatakrishnan, V. On the role and challenges of CFD in the aerospace industry. Aeronautical J. 120, 209–232 (2016).

Article  Google Scholar 

Sjostrand, T. Volume and distribution of blood and their significance in regulating the circulation. Physiol. Rev. 33, 202–228 (1953).

Article  CAS  PubMed  Google Scholar 

Maw, G. J., Mackenzie, I. L. & Taylor, N. A. Redistribution of body fluids during postural manipulations. Acta Physiol. Scand. 155, 157–163 (1995).

Article  CAS  PubMed  Google Scholar 

Leverett, S. D. Jr, Burton, R. R., Crossley, R. J., Michaelson, E. D. & Shubrooks, S. J. Jr. Physiologic responses to high, sustained +Gz acceleration. Defense Technical Information Center. apps.dtic.mil/sti/citations/AD0777604 (1973).

Howard, P. in A Textbook of Aviation Physiology (ed. Gillies, J. A.) 551–687 (Pergamon Press, 1965).

McKenzie, I. & Gillingham, K. K. Incidence of cardiac dysrhythmias occurring during centrifuge training. Aviat. Space Environ. Med. 64, 687–691 (1993).

CAS  PubMed  Google Scholar 

Whinnery, A. M., Whinnery, J. E. & Hickman, J. R. High +Gz centrifuge training: the electrocardiographic response to +Gz-induced loss of consciousness. Aviat. Space Environ. Med. 61, 609–614 (1990).

CAS  PubMed  Google Scholar 

Wang, Y. X., Xu, L., Wei, W. B. & Jonas, J. B. Intraocular pressure and its normal range adjusted for ocular and systemic parameters. The Beijing Eye Study 2011. PLoS ONE 13, e0196926 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Cochran, L. B., Gard, P.W. & Norsworthy, M. E. Variations in Human G Tolerance to Positive Acceleration (US Naval School of Aviation Medicine, 1954).

Whinnery, T., Forster, E. M. & Rogers, P. B. The +Gz recovery of consciousness curve. Extrem. Physiol. Med. 3, 9 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Tripp, L. D. et al. +Gz acceleration loss of consciousness: time course of performance deficits with repeated experience. Hum. Factors 48, 109–120 (2006).

Article  PubMed  Google Scholar 

Whinnery, T. & Forster, E. M. The +Gz-induced loss of consciousness curve. Extrem. Physiol. Med. 2, 19 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Green, N. D. C. in Ernsting’s Aviation Medicine Ch. 7 (eds Gradwell, D. P. & Rainford, D.) 131–156 (CRC Press, 2016).

Nishida, Y. et al. Effects and biological limitations of +Gz acceleration on the autonomic functions-related circulation in rats. J. Physiol. Sci. 66, 447–462 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Eiken, O., Keramidas, M. E., Taylor, N. A. & Gronkvist, M. Intraocular pressure and cerebral oxygenation during prolonged headward acceleration. Eur. J. Appl. Physiol. 117, 61–72 (2017).

Article  CAS  PubMed  Google Scholar 

Park, M., Yoo, S., Seol, H., Kim, C. & Hong, Y. Unpredictability of fighter pilots’ g duration tolerance by anthropometric and physiological characteristics. Aerosp. Med. Hum. Perform. 86, 397–401 (2015).

Article  PubMed  Google Scholar 

Webb, J. T., Oakley, C. J. & Meeker, L. J. Unpredictability of fighter pilot G tolerance using anthropometric and physiologic variables. Aviat. Space Environ. Med. 62, 128–135 (1991).

CAS  PubMed  Google Scholar 

Tu, M. Y. et al. Roles of physiological responses and anthropometric factors on the gravitational force tolerance for occupational hypergravity exposure. Int. J. Environ. Res. Public. Health 17, 8061 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Nunneley, S. A. & Stribley, R. F. Heat and acute dehydration effects on acceleration response in man. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 47, 197–200 (1979).

CAS  PubMed  Google Scholar 

Mills, W. D., Greenhaw, R. M. & Wang, J. M. P. A medical review of fatal high-G U.S. aerobatic accidents. Aerosp. Med. Hum. Perform. 90, 959–965 (2019).

Article  PubMed  Google Scholar 

Eiken, O., Mekjavic, I., Sundblad, P. & Kolegard, R. G tolerance vis-a-vis pressure-distension and pressure-flow relationships of leg arteries. Eur. J. Appl. Physiol. 112, 3619–3627 (2012).

Article  PubMed  Google Scholar 

Sundblad, P., Kolegard, R., Migeotte, P. F., Deliere, Q. & Eiken, O. The arterial baroreflex and inherent G tolerance. Eur. J. Appl. Physiol. 116, 1149–1157 (2016).

Article  PubMed  Google Scholar 

Pollock, R. D. et al. Hemodynamic responses and G protection afforded by three different anti-G systems. Aerosp. Med. Hum. Perform. 90, 925–933 (2019).

Article  PubMed  Google Scholar 

Shubrooks, S. J. Jr Positive-pressure breathing as a protective technique during +Gz acceleration. J. Appl. Physiol. 35, 294–298 (1973).

Article  PubMed  Google Scholar 

Glaister, D. H. The Effects of Gravity and Acceleration on the Lung. The Advisory Group for Aerospace Research and Development (NATO, 1970).

Ryan, E. A., Kerr, W. K. & Franks, W. R. Some physiological findings on normal men subjected to negative g. J. Aviat. Med. 21, 173–194 (1950).

CAS  PubMed  Google Scholar 

Lehr, A. K. et al. Previous exposure to negative Gz reduces relaxed +Gz tolerance. Aviat. Space Environ. Med. 63, 405 (1992).

Google Scholar 

Prior, A. R. J., Adcock, T. R. & McCarthy, G. W. In-flight arterial blood pressure changes during −Gz to +Gz manoeuvring. Aviat. Space Environ. Med. 64, 428 (1993).

Google Scholar 

Menden, T. et al. Dynamic lung behavior under high G acceleration monitored with electrical impedance tomography. Physiol. Meas. 42, 094001 (2021).

Article  Google Scholar 

Pollock, R. D. et al. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp. Med. Hum. Perform. 92, 633–641 (2021).

Article  PubMed  Google Scholar 

Sandler, H. Cineradiographic observations of human subjects during transverse accelerations of +5Gx and +10Gx. Aerosp. Med. 37, 445–448 (1966).

CAS  PubMed  Google Scholar 

Lindberg, E. F., Marshall, H. W., Sutterer, W. F., Mc, G. T. & Wood, E. H. Studies of cardiac output and circulatory pressures in human beings during forward acceleration. Aerosp. Med. 33, 81–91 (1962).

CAS  PubMed  Google Scholar 

Rogge, J. D., Meyer, J. F. & Brown, W. K. Comparison of the incidence of cardiac arrhythmias during +Gx acceleration, treadmill exercise and tilt table testing. Aerosp. Med. 40, 1–5 (1969).

CAS  PubMed  Google Scholar 

Suresh, R., Blue, R. S., Mathers, C. H., Castleberry, T. L. & Vanderploeg, J. M. Dysrhythmias in laypersons during centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 88, 1008–1015 (2017).

Article  PubMed  Google Scholar 

Torphy, D. E., Leverett, S. D. Jr & Lamb, L. E. Cardiac arrhythmias occurring during acceleration. Aerosp. Med. 37, 52–58 (1966).

CAS  PubMed  Google Scholar 

Pollock, R. D., Hodkinson, P. D., Smith, T. G. & Oh, G. The x, y and z of human physiological responses to acceleration. Exp. Physiol. 106, 2367–2384 (2021).

Article  PubMed  Google Scholar 

Smith, T. G. et al. Physiological effects of centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 93, 830–839 (2022).

Article  PubMed  Google Scholar 

Blue, R. S., Riccitello, J. M., Tizard, J., Hamilton, R. J. & Vanderploeg, J. M. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviat. Space Environ. Med. 83, 929–934 (2012).

Article  PubMed  Google Scholar 

Blue, R. S. et al. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition. Aviat. Space Environ. Med. 85, 721–729 (2014).

Comments (0)

No login
gif