Reactive oxygen species in hypertension

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

Article  PubMed Central  Google Scholar 

GBD 2017 Risk Factor Collaborators.Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923–1994 (2018).

Article  Google Scholar 

Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

Article  PubMed  Google Scholar 

D’Autréaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

Article  PubMed  Google Scholar 

Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

Article  CAS  PubMed  Google Scholar 

Petrie, J. R., Guzik, T. J. & Touyz, R. M. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can. J. Cardiol. 34, 575–584 (2018).

Article  PubMed  Google Scholar 

Pinheiro, L. C. & Oliveira-Paula, G. H. Sources and effects of oxidative stress in hypertension. Curr. Hypertens. Rev. 16, 166–180 (2020).

Article  CAS  PubMed  Google Scholar 

Griendling, K. K. et al. Oxidative stress and hypertension. Circ. Res. 128, 993–1020 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pawluk, H., Pawluk, R., Robaczewska, J., Kędziora-Kornatowska, K. & Kędziora, J. Biomarkers of antioxidant status and lipid peroxidation in elderly patients with hypertension. Redox Rep. 22, 542–546 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourgonje, A. R. et al. Systemic oxidative stress associates with new-onset hypertension in the general population. Free Radic. Biol. Med. 187, 123–131 (2022).

Article  CAS  PubMed  Google Scholar 

Kim, M. K. et al. Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension 40, 797–803 (2002).

Article  CAS  PubMed  Google Scholar 

Czernichow, S. et al. Effect of supplementation with antioxidants upon long-term risk of hypertension in the SU.VI.MAX study: association with plasma antioxidant levels. J. Hypertens. 23, 2013–2018 (2005).

Article  CAS  PubMed  Google Scholar 

Lassègue, B., San Martín, A. & Griendling, K. K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364–1390 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Buvelot, H., Jaquet, V. & Krause, K. H. Mammalian NADPH oxidases. Methods Mol. Biol. 1982, 17–36 (2019).

Article  CAS  PubMed  Google Scholar 

Gimenez, M., Schickling, B. M., Lopes, L. R. & Miller, F. J. Nox1 in cardiovascular diseases: regulation and pathophysiology. Clin. Sci. 130, 151–165 (2016).

Article  CAS  Google Scholar 

Matsuno, K. et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112, 2677–2685 (2005).

Article  CAS  PubMed  Google Scholar 

Dikalova, A. et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112, 2668–2676 (2005).

Article  CAS  PubMed  Google Scholar 

Vendrov, A. E. et al. Renal NOXA1/NOX1 signaling regulates epithelial sodium channel and sodium retention in angiotensin II-induced hypertension. Antioxid. Redox Signal. 36, 550–566 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rios, F. J. et al. TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun. Biol. 5, 746 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura, M., Kanno, M. & Kai, T. Destabilization of neutrophil NADPH oxidase by ATP and other trinucleotides and its prevention by Mg2+. Biochim. Biophys. Acta 1510, 270–277 (2001).

Article  CAS  PubMed  Google Scholar 

Padgett, C. A. et al. Galectin-3 mediates vascular dysfunction in obesity by regulating NADPH oxidase 1. Arterioscler. Thromb. Vasc. Biol. 43, e381–e395 (2023).

Article  CAS  PubMed  Google Scholar 

Babior, B. M., Lambeth, J. D. & Nauseef, W. The neutrophil NADPH oxidase. Arch. Biochem. Biophys. 397, 342–344 (2002).

Article  CAS  PubMed  Google Scholar 

Violi, F. et al. Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation 120, 1616–1622 (2009).

Article  CAS  PubMed  Google Scholar 

Sag, C. M. et al. Distinct regulatory effects of myeloid cell and endothelial cell NAPDH oxidase 2 on blood pressure. Circulation 135, 2163–2177 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison, C. B. et al. Fibroblast Nox2 (NADPH oxidase-2) regulates ANG II (angiotensin II)-induced vascular remodeling and hypertension via paracrine signaling to vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 41, 698–710 (2021).

Article  CAS  PubMed  Google Scholar 

Hingtgen, S. D. et al. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol. Genomics 26, 180–191 (2006).

Article  CAS  PubMed  Google Scholar 

Bendall, J. K., Cave, A. C., Heymes, C., Gall, N. & Shah, A. M. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105, 293–296 (2002).

Article  CAS  PubMed  Google Scholar 

Johar, S., Cave, A. C., Narayanapanicker, A., Grieve, D. J. & Shah, A. M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 20, 1546–1548 (2006).

Article  CAS  PubMed  Google Scholar 

Brandt, M. et al. Telomere shortening in hypertensive heart disease depends on oxidative DNA damage and predicts impaired recovery of cardiac function in heart failure. Hypertension 79, 2173–2184 (2022).

Article  CAS  PubMed  Google Scholar 

Emmerson, A. et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J. Clin. Invest. 128, 3088–3101 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Takac, I. et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304–13313 (2011).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif