NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).
Article PubMed Central Google Scholar
GBD 2017 Risk Factor Collaborators.Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923–1994 (2018).
Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).
D’Autréaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).
Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
Article CAS PubMed Google Scholar
Petrie, J. R., Guzik, T. J. & Touyz, R. M. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can. J. Cardiol. 34, 575–584 (2018).
Pinheiro, L. C. & Oliveira-Paula, G. H. Sources and effects of oxidative stress in hypertension. Curr. Hypertens. Rev. 16, 166–180 (2020).
Article CAS PubMed Google Scholar
Griendling, K. K. et al. Oxidative stress and hypertension. Circ. Res. 128, 993–1020 (2021).
Article CAS PubMed PubMed Central Google Scholar
Pawluk, H., Pawluk, R., Robaczewska, J., Kędziora-Kornatowska, K. & Kędziora, J. Biomarkers of antioxidant status and lipid peroxidation in elderly patients with hypertension. Redox Rep. 22, 542–546 (2017).
Article CAS PubMed PubMed Central Google Scholar
Bourgonje, A. R. et al. Systemic oxidative stress associates with new-onset hypertension in the general population. Free Radic. Biol. Med. 187, 123–131 (2022).
Article CAS PubMed Google Scholar
Kim, M. K. et al. Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension 40, 797–803 (2002).
Article CAS PubMed Google Scholar
Czernichow, S. et al. Effect of supplementation with antioxidants upon long-term risk of hypertension in the SU.VI.MAX study: association with plasma antioxidant levels. J. Hypertens. 23, 2013–2018 (2005).
Article CAS PubMed Google Scholar
Lassègue, B., San Martín, A. & Griendling, K. K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364–1390 (2012).
Article PubMed PubMed Central Google Scholar
Buvelot, H., Jaquet, V. & Krause, K. H. Mammalian NADPH oxidases. Methods Mol. Biol. 1982, 17–36 (2019).
Article CAS PubMed Google Scholar
Gimenez, M., Schickling, B. M., Lopes, L. R. & Miller, F. J. Nox1 in cardiovascular diseases: regulation and pathophysiology. Clin. Sci. 130, 151–165 (2016).
Matsuno, K. et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112, 2677–2685 (2005).
Article CAS PubMed Google Scholar
Dikalova, A. et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112, 2668–2676 (2005).
Article CAS PubMed Google Scholar
Vendrov, A. E. et al. Renal NOXA1/NOX1 signaling regulates epithelial sodium channel and sodium retention in angiotensin II-induced hypertension. Antioxid. Redox Signal. 36, 550–566 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rios, F. J. et al. TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun. Biol. 5, 746 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tamura, M., Kanno, M. & Kai, T. Destabilization of neutrophil NADPH oxidase by ATP and other trinucleotides and its prevention by Mg2+. Biochim. Biophys. Acta 1510, 270–277 (2001).
Article CAS PubMed Google Scholar
Padgett, C. A. et al. Galectin-3 mediates vascular dysfunction in obesity by regulating NADPH oxidase 1. Arterioscler. Thromb. Vasc. Biol. 43, e381–e395 (2023).
Article CAS PubMed Google Scholar
Babior, B. M., Lambeth, J. D. & Nauseef, W. The neutrophil NADPH oxidase. Arch. Biochem. Biophys. 397, 342–344 (2002).
Article CAS PubMed Google Scholar
Violi, F. et al. Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation 120, 1616–1622 (2009).
Article CAS PubMed Google Scholar
Sag, C. M. et al. Distinct regulatory effects of myeloid cell and endothelial cell NAPDH oxidase 2 on blood pressure. Circulation 135, 2163–2177 (2017).
Article CAS PubMed PubMed Central Google Scholar
Harrison, C. B. et al. Fibroblast Nox2 (NADPH oxidase-2) regulates ANG II (angiotensin II)-induced vascular remodeling and hypertension via paracrine signaling to vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 41, 698–710 (2021).
Article CAS PubMed Google Scholar
Hingtgen, S. D. et al. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol. Genomics 26, 180–191 (2006).
Article CAS PubMed Google Scholar
Bendall, J. K., Cave, A. C., Heymes, C., Gall, N. & Shah, A. M. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105, 293–296 (2002).
Article CAS PubMed Google Scholar
Johar, S., Cave, A. C., Narayanapanicker, A., Grieve, D. J. & Shah, A. M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 20, 1546–1548 (2006).
Article CAS PubMed Google Scholar
Brandt, M. et al. Telomere shortening in hypertensive heart disease depends on oxidative DNA damage and predicts impaired recovery of cardiac function in heart failure. Hypertension 79, 2173–2184 (2022).
Article CAS PubMed Google Scholar
Emmerson, A. et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J. Clin. Invest. 128, 3088–3101 (2018).
Article PubMed PubMed Central Google Scholar
Takac, I. et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304–13313 (2011).
Comments (0)