Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
Article CAS PubMed Google Scholar
Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).
Article CAS PubMed PubMed Central Google Scholar
Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).
Article CAS PubMed PubMed Central Google Scholar
Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246 (2015).
Article CAS PubMed PubMed Central Google Scholar
Eshel, N., Tian, J., Bukwich, M. & Uchida, N. Dopamine neurons share common response function for reward prediction error. Nat. Neurosci. 19, 479–486 (2016).
Article CAS PubMed PubMed Central Google Scholar
Steinberg, E. E. et al. A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16, 966–973 (2013).
Article CAS PubMed PubMed Central Google Scholar
Chang, C. Y. et al. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nat. Neurosci. 19, 111–116 (2016).
Article CAS PubMed Google Scholar
Reynolds, J. N. J. & Wickens, J. R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15, 507–521 (2002).
Morita, K., Morishima, M., Sakai, K. & Kawaguchi, Y. Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways: (Trends in Neurosciences 35, 457–467; 2012). Trends Neurosci. 40, 453 (2017).
Article CAS PubMed Google Scholar
Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).
Article CAS PubMed PubMed Central Google Scholar
Starkweather, C. K. & Uchida, N. Dopamine signals as temporal difference errors: recent advances. Curr. Opin. Neurobiol. 67, 95–105 (2021).
Article CAS PubMed Google Scholar
Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. M. & Graybiel, A. M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500, 575–579 (2013).
Article CAS PubMed PubMed Central Google Scholar
Niv, Y. Neuroscience: dopamine ramps up. Nature 500, 533–535 (2013).
Article CAS PubMed Google Scholar
Berke, J. D. What does dopamine mean? Nat. Neurosci. 21, 787–793 (2018).
Article CAS PubMed PubMed Central Google Scholar
Hamid, A. A. et al. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19, 117–126 (2016).
Article CAS PubMed Google Scholar
Mohebi, A. et al. Publisher correction: dissociable dopamine dynamics for learning and motivation. Nature 571, E3 (2019).
Article CAS PubMed Google Scholar
Krausz, T. A., Comrie, A. E., Frank, L. M., Daw, N. D. & Berke, J. D. Dual credit assignment processes underlie dopamine signals in a complex spatial environment. Neuron 111, 3465–3478 (2023).
Article CAS PubMed Google Scholar
Hamilos, A. E. et al. Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. eLife 10, e62583 (2021).
Article CAS PubMed PubMed Central Google Scholar
Collins, A. L. et al. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation. Sci. Rep. 6, 20231 (2016).
Article CAS PubMed PubMed Central Google Scholar
Gershman, S. J. Dopamine ramps are a consequence of reward prediction errors. Neural Comput. 26, 467–471 (2014).
Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616 (2020).
Article CAS PubMed PubMed Central Google Scholar
Mikhael, J. G., Kim, H. R., Uchida, N. & Gershman, S. J. The role of state uncertainty in the dynamics of dopamine. Curr. Biol. 32, 1077–1087 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kato, A. & Morita, K. Forgetting in reinforcement learning links sustained dopamine signals to motivation. PLoS Comput. Biol. 12, e1005145 (2016).
Article PubMed PubMed Central Google Scholar
Beron, C. C., Neufeld, S. Q., Linderman, S. W. & Sabatini, B. L. Mice exhibit stochastic and efficient action switching during probabilistic decision making. Proc. Natl Acad. Sci. USA 119, e2113961119 (2022).
Article PubMed PubMed Central Google Scholar
Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J. Neurosci. 35, 8145–8157 (2015).
Article CAS PubMed PubMed Central Google Scholar
Ito, M. & Doya, K. Validation of decision-making models and analysis of decision variables in the rat basal ganglia. J. Neurosci. 29, 9861–9874 (2009).
Article CAS PubMed PubMed Central Google Scholar
Lloyd, K. & Dayan, P. Tamping ramping: algorithmic, implementational, and computational explanations of phasic dopamine signals in the accumbens. PLoS Comput. Biol. 11, e1004622 (2015).
Article PubMed PubMed Central Google Scholar
Hamid, A. A., Frank, M. J. & Moore, C. I. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell 184, 2733–2749 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guru, A., Seo, C., Kullakanda, D. S., Schaffer, J. A. & Warden, M. R. Ramping activity in midbrain dopamine neurons signifies the use of a cognitive map. Preprint at bioRxiv https://doi.org/10.1101/2020.05.21.108886 (2020).
Amo, R. et al. A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning. Nat. Neurosci. 25, 1082–1092 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–163 (1992).
Comments (0)