Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).
Article CAS PubMed PubMed Central Google Scholar
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
Article CAS PubMed Google Scholar
van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).
Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).
Article CAS PubMed PubMed Central Google Scholar
Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).
Article CAS PubMed PubMed Central Google Scholar
Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kosicki, M. et al. Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nat. Commun. 13, 3422 (2022).
Article CAS PubMed PubMed Central Google Scholar
Alanis-Lobato, G. et al. Frequent loss of heterozygosity in CRISPR–Cas9-edited early human embryos. Proc. Natl Acad. Sci. USA 118, e2004832117 (2021).
Article CAS PubMed PubMed Central Google Scholar
Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).
Article CAS PubMed PubMed Central Google Scholar
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).
Article CAS PubMed Google Scholar
Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).
Article CAS PubMed Google Scholar
Cullot, G. et al. CRISPR–Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136 (2019).
Article PubMed PubMed Central Google Scholar
Cullot, G. et al. Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR–Cas9. Nat. Commun. 14, 4072 (2023).
Article CAS PubMed PubMed Central Google Scholar
Boutin, J. et al. CRISPR–Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat. Commun. 12, 4922 (2021).
Article CAS PubMed PubMed Central Google Scholar
Tsai, H.-H. et al. Whole genomic analysis reveals atypical non-homologous off-target large structural variants induced by CRISPR–Cas9-mediated genome editing. Nat. Commun. 14, 5183 (2023).
Article CAS PubMed PubMed Central Google Scholar
Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9 (2017).
Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478 (2019).
Article CAS PubMed Google Scholar
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
Article CAS PubMed PubMed Central Google Scholar
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
Article CAS PubMed PubMed Central Google Scholar
Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).
Article CAS PubMed PubMed Central Google Scholar
Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).
Article PubMed PubMed Central Google Scholar
Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).
Article CAS PubMed PubMed Central Google Scholar
Park, S. & Beal, P. A. Off-target editing by CRISPR-guided DNA base editors. Biochemistry 58, 3727–3734 (2019).
Article CAS PubMed Google Scholar
Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).
Article CAS PubMed Google Scholar
Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discovery 19, 839–859 (2020).
Article CAS PubMed Google Scholar
Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).
Article CAS PubMed Google Scholar
Tou, C. J., Schaffer, D. V. & Dueber, J. E. Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synth. Biol. 9, 1911–1916 (2020).
Article CAS PubMed Google Scholar
Long, M. et al. Directed evolution of ornithine cyclodeaminase using an EvolvR-based growth-coupling strategy for efficient biosynthesis of l-proline. ACS Synth. Biol. 9, 1855–1863 (2020).
Article CAS PubMed Google Scholar
Gossing, M. et al. Multiplexed guide RNA expression leads to increased mutation frequency in targeted window using a CRISPR-guided error-prone DNA polymerase in Saccharomyces cerevisiae. ACS Synth. Biol. 12, 2271–2277 (2023).
Article CAS PubMed PubMed Central Google Scholar
Nakade, S. et al. Frame editors for precise, template-free frameshifting. Preprint at https://doi.org/10.1101/2022.12.05.518807 (2022).
Yang, Q. et al. Phage DNA polymerase prevents on-target damage and enhances precision of CRISPR editing. Preprint at https://doi.org/10.1101/2023.01.10.523496 (2023).
Comments (0)