Longitudinal Assessment of Blood-Based Inflammatory, Neuromuscular, and Neurovascular Biomarker Profiles in Intensive Care Unit–Acquired Weakness: A Prospective Single-Center Cohort Study

Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637–53.

Article  PubMed  PubMed Central  Google Scholar 

Latronico N, Rasulo FA, Eikermann M, Piva S. Illness weakness, polyneuropathy and myopathy: diagnosis, treatment, and long-term outcomes. Crit Care. 2023;27(1):439. Erratum in: Crit Care. 2023;27(1):469.

Klawitter F, Schaller SJ, Söhle M, Reuter DA, Ehler J. Intensive care unit-acquired weakness: a nationwide survey on diagnostics, monitoring and treatment strategies on German intensive care units. Anaesthesiologie. 2022;71(8):618–25.

Article  PubMed  PubMed Central  Google Scholar 

Turan Z, Topaloglu M, Ozyemisci TO. Medical Research Council-sumscore: a tool for evaluating muscle weakness in patients with post-intensive care syndrome. Crit Care. 2020;24(1):562.

Article  PubMed  PubMed Central  Google Scholar 

Wu Y, Zhang Z, Jiang B, Wang G, Wei H, Li B, et al. Current practice and barriers to ICU-acquired weakness assessment: a cross-sectional survey. Physiotherapy. 2021;112:135–42.

Article  PubMed  Google Scholar 

Klawitter F, Oppitz MC, Goettel N, Berger MM, Hodgson C, Weber-Carstens S, et al. A global survey on diagnostic, therapeutic and preventive strategies in intensive care unit-acquired weakness. Medicina (Kaunas). 2022;58(8):1068.

Article  PubMed  Google Scholar 

Klawitter F, Walter U, Axer H, Ehler J. Intensive care unit-acquired weakness-diagnostic value of neuromuscular ultrasound. Anaesthesiologie. 2023;72(8):543–54.

Article  PubMed  Google Scholar 

Ruhnau J, Müller J, Nowak S, Strack S, Sperlich D, Pohl A, et al. Serum biomarkers of a pro-neuroinflammatory state may define the pre-operative risk for postoperative delirium in spine surgery. Int J Mol Sci. 2023;24(12):10335.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saller T, Petzold A, Zetterberg H, Kuhle J, Chappell D, von Dossow V, et al. A case series on the value of tau and neurofilament protein levels to predict and detect delirium in cardiac surgery patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163(3):241–6.

Article  PubMed  Google Scholar 

Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: are we on the track toward clinical implementation? Crit Care. 2023;27(1):214.

Article  PubMed  PubMed Central  Google Scholar 

De Larichaudy J, Zufferli A, Serra F, Isidori AM, Naro F, Dessalle K, et al. TNF-α- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet Muscle. 2012;2(1):2.

Article  PubMed  PubMed Central  Google Scholar 

Reid MB, Lännergren J, Westerblad H. Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: involvement of muscle myofilaments. Am J Respir Crit Care Med. 2002;166(4):479–84.

Article  PubMed  Google Scholar 

Wondergem R, Graves BM, Li C, Williams DL. Lipopolysaccharide prolongs action potential duration in HL-1 mouse cardiomyocytes. Am J Physiol Cell Physiol. 2012;303(8):C825–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooney RN, Maish GO 3rd, Gilpin T, Shumate ML, Lang CH, Vary TC. Mechanism of IL-1 induced inhibition of protein synthesis in skeletal muscle. Shock. 1999;11(4):235–41.

Article  CAS  PubMed  Google Scholar 

Llovera M, Carbó N, López-Soriano J, García-Martínez C, Busquets S, Alvarez B, et al. Different cytokines modulate ubiquitin gene expression in rat skeletal muscle. Cancer Lett. 1998;133(1):83–7.

Article  CAS  PubMed  Google Scholar 

Cheng M, Nguyen MH, Fantuzzi G, Koh TJ. Endogenous interferon-gamma is required for efficient skeletal muscle regeneration. Am J Physiol Cell Physiol. 2008;294(5):C1183–91.

Article  CAS  PubMed  Google Scholar 

Piotti A, Novelli D, Meessen JM, Ferlicca D, Coppolecchia S, Marino A, et al.; ALBIOS Investigators. Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Crit Care. 2021;25(1):113.

Patejdl R, Walter U, Rosener S, Sauer M, Reuter DA, Ehler J. Muscular ultrasound, syndecan-1 and procalcitonin serum levels to assess intensive care unit-acquired weakness. Can J Neurol Sci. 2019;46(2):234–42.

Article  PubMed  Google Scholar 

Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19(1):274.

Article  PubMed  PubMed Central  Google Scholar 

Klawitter F, Walter U, Patejdl R, Endler J, Reuter DA, Ehler J. Sonographic evaluation of muscle echogenicity for the detection of intensive care unit-acquired weakness: a pilot single-center prospective cohort study. Diagnostics (Basel). 2022;12(6):1378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patejdl R, Klawitter F, Walter U, Zanaty K, Schwandner F, Sellmann T, et al. A novel ex vivo model for critical illness neuromyopathy using freshly resected human colon smooth muscle. Sci Rep. 2021;11(1):24249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodrigues P, Cerf C, et al.; Groupe de Réflexion et d’Etude des Neuromyopathies en Réanimation. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.

Kleyweg RP, van der Meché FG, Schmitz PI. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. Muscle Nerve. 1991;14(11):1103–9.

Article  CAS  PubMed  Google Scholar 

Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, de Jonghe B, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009;37(10 Suppl):S299-308.

Article  PubMed  Google Scholar 

Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014;42(3):701–11.

Article  PubMed  Google Scholar 

Wieske L, Witteveen E, Petzold A, Verhamme C, Schultz MJ, van Schaik IN, et al. Neurofilaments as a plasma biomarker for ICU-acquired weakness: an observational pilot study. Crit Care. 2014;18(1):R18.

Article  PubMed  PubMed Central  Google Scholar 

Kanova M, Kohout P. Molecular mechanisms underlying intensive care unit-acquired weakness and sarcopenia. Int J Mol Sci. 2022;23(15):8396.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Syed MH, Khan H, Singh KK, Qadura M. The role of fatty acid binding protein 3 in cardiovascular diseases. Biomedicines. 2022;10(9):2283.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Zhou H, Peng Q, Jiang W, Qiao W, Wang G. Fatty acid binding protein 3 is associated with skeletal muscle strength in polymyositis and dermatomyositis. Int J Rheum Dis. 2017;20(2):252–60.

Article  CAS  PubMed  Google Scholar 

Qaisar R, Karim A, Muhammad T, Shah I, Khan J. Prediction of sarcopenia using a battery of circulating biomarkers. Sci Rep. 2021;11(1):8632.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee SM, Lee SH, Jung Y, Lee Y, Yoon JH, Choi JY, et al. FABP3-mediated membrane lipid saturation alters fluidity and induces ER stress in skeletal muscle with aging. Nat Commun. 2020;11(1):5661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen HC, Bu S, Nikfarjam S, Rasheed B, Michels DC, Singh A, et al. Loss of fatty acid binding protein 3 ameliorates lipopolysaccharide-induced inflammation and endothelial dysfunction. J Biol Chem. 2023;299(3): 102921.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif