Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130(4):1080–97. https://doi.org/10.3171/2017.10.JNS17352.
Maas AIR, Menon DK, David Adelson PD, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048. https://doi.org/10.1016/S1474-4422(17)30371-X.
Hasen M, Gomez A, Froese L, et al. Alternative continuous intracranial pressure-derived cerebrovascular reactivity metrics in traumatic brain injury: a scoping overview. Acta Neurochir (Wien). 2020;162(7):1647–62. https://doi.org/10.1007/s00701-020-04378-7.
Stocchetti N, Carbonara M, Citerio G, et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16(6):452–64. https://doi.org/10.1016/S1474-4422(17)30118-7.
Lang EW, Chesnut RM. A bedside method for investigating the integrity and critical thresholds of cerebral pressure autoregulation in severe traumatic brain injury patients. Br J Neurosurg. 2000;14(2):117–26. https://doi.org/10.1080/02688690050004534.
Article PubMed CAS Google Scholar
Batson C, Stein KY, Gomez A, et al. Intracranial pressure-derived cerebrovascular reactivity indices, chronological age, and biological sex in traumatic brain injury: a scoping review. Neurotrauma Rep. 2022;3(1):44–56. https://doi.org/10.1089/neur.2021.0054.
Article PubMed PubMed Central Google Scholar
Czosnyka M, Czosnyka Z, Smielewski P. Pressure reactivity index: journey through the past 20 years. Acta Neurochir (Wien). 2017;159(11):2063–5. https://doi.org/10.1007/s00701-017-3310-1.
Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–9. https://doi.org/10.1097/00006123-199707000-00005.
Article PubMed CAS Google Scholar
Sánchez-Porras R, Santos E, Czosnyka M, Zheng Z, Unterberg AW, Sakowitz OW. Long pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien). 2012;154(9):1575–81. https://doi.org/10.1007/s00701-012-1423-0.
Santos E, Diedler J, Sykora M, et al. Low-frequency sampling for PRx calculation does not reduce prognostication and produces similar CPPopt in intracerebral haemorrhage patients. Acta Neurochir (Wien). 2011;153(11):2189–95. https://doi.org/10.1007/s00701-011-1148-5.
Gritti P, Bonfanti M, Zangari R, et al. Evaluation and application of ultra-low-resolution pressure reactivity index in moderate or severe traumatic brain injury. J Neurosurg Anesthesiol. 2023;35(3):313–21. https://doi.org/10.1097/ANA.0000000000000847.
Gritti P, Bonfanti M, Zangari R, et al. Evaluation and application of ultra-low-frequency pressure reactivity index in pediatric traumatic brain injury patients. Acta Neurochir (Wien). 2023;165(4):865–74. https://doi.org/10.1007/s00701-023-05538-1.
Gritti P, Bonfanti M, Zangari R, et al. Cerebral autoregulation in traumatic brain injury: ultra-low-frequency pressure reactivity index and intracranial pressure across age groups. Crit Care. 2024;28(1):33. https://doi.org/10.1186/s13054-024-04814-5.
Article PubMed PubMed Central Google Scholar
Garza N, Toussi A, Wilson M, Shahlaie K, Martin R. The increasing age of TBI patients at a single level 1 trauma center and the discordance between GCS and CT Rotterdam scores in the elderly. Front Neurol. 2020;11(February): 502847. https://doi.org/10.3389/fneur.2020.00112.
Vollmer DG, Torner JC, Jane JA, et al. Age and outcome following traumatic coma: Why do older patients fare worse? J Neurosurg. 1991. https://doi.org/10.3171/sup.1991.75.1s.0s37.
Thompson HJ, Rivara FP, Jurkovich GJ, Wang J, Nathens AB, MacKenzie EJ. Evaluation of the effect of intensity of care on mortality after traumatic brain injury. Crit Care Med. 2008;36(1):282–90. https://doi.org/10.1097/01.CCM.0000297884.86058.8A.
Article PubMed PubMed Central Google Scholar
Mcintyre A, Mehta S, Aubut JA, Dijkers M, Teasell RW. Mortality among older adults after a traumatic brain injury: A meta-analysis. Brain Inj. 2013;27(1):31–40. https://doi.org/10.3109/02699052.2012.700086.
Susman M, DiRusso SM, Sullivan T, et al. Traumatic brain injury in the elderly: Increased mortality and worse functional outcome at discharge despite lower injury severity. J Trauma. 2002;53(2):219–24. https://doi.org/10.1097/00005373-200208000-00004.
Rosner MJ, Becker DP. Origin and evolution of plateau waves Experimental observations and a theoretical model. J Neurosurg. 1984;60(2):312–24. https://doi.org/10.3171/jns.1984.60.2.0312.
Article PubMed CAS Google Scholar
Castellani G, Zweifel C, Kim DJ, et al. Plateau waves in head injured patients requiring neurocritical care. Neurocrit Care. 2009;11(2):143–50. https://doi.org/10.1007/s12028-009-9235-7.
Czosnyka M, Smielewski P, Piechnik S, et al. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11–9. https://doi.org/10.3171/jns.1999.91.1.0011.
Article PubMed CAS Google Scholar
Lang EW, Kasprowicz M, Smielewski P, Pickard J, Czosnyka M. Changes in cerebral partial oxygen pressure and cerebrovascular reactivity during intracranial pressure plateau waves. Neurocrit Care. 2015;23(1):85–91. https://doi.org/10.1007/s12028-014-0074-9.
Article PubMed CAS Google Scholar
Dias C, Maia I, Cerejo A, et al. Pressures, flow, and brain oxygenation during plateau waves of intracranial pressure. Neurocrit Care. 2014;21(1):124–32. https://doi.org/10.1007/s12028-013-9918-y.
Article PubMed CAS Google Scholar
Donnelly J, Smielewski P, Adams H, et al. Observations on the cerebral effects of refractory intracranial hypertension after severe traumatic brain injury. Neurocrit Care. 2020;32(2):437–47. https://doi.org/10.1007/s12028-019-00748-x.
Marshall LF, Marshall SB, Klauber MR, et al. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma. 1992;9(1):S287-92.
Lachat C, Hawwash D, Ocké MC, et al. Strengthening the reporting of observational studies in epidemiology—nutritional epidemiology (STROBE-nut): an extension of the STROBE statement. PLOS Med. 2016;13(6): e1002036. https://doi.org/10.1371/journal.pmed.1002036.
Article PubMed PubMed Central Google Scholar
Gritti P, Zangari R, Carobbio A, et al. Acute and subacute outcome predictors in moderate and severe traumatic brain injury: a retrospective monocentric study. World Neurosurg. 2019;128:e531–40. https://doi.org/10.1016/j.wneu.2019.04.190.
Kochanek PM, Tasker RC, Bell MJ, et al. Management of pediatric severe traumatic brain injury: 2019 consensus and guidelines-based algorithm for first and second tier therapies. Pediatr Crit Care Med. 2019;20(3):269–79. https://doi.org/10.1097/PCC.0000000000001737.
Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury. Fourth Edition Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.
Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24:S1–106. https://doi.org/10.1089/neu.2007.9999
Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5(8):e165; discussion e165. https://doi.org/10.1371/journal.pmed.0050165
Sorrentino E, Diedler J, Kasprowicz M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16(2):258–66. https://doi.org/10.1007/s12028-011-9630-8.
Comments (0)