Adewuyi A (2022) Underutilized lignocellulosic waste as sources of feedstock for biofuel production in developing countries. Front Energy Res 10:741570. https://doi.org/10.3389/fenrg.2022.741570
Amiri H, Azarbaijani R, Parsa Yeganeh L et al (2016) Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol and ethanol under aerobic conditions. Sci Report 6:18408. https://doi.org/10.1038/srep18408
Andlar M, Rezić T, Marđetko N et al (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18(11):768–778. https://doi.org/10.1002/elsc.201800039
Article CAS PubMed PubMed Central Google Scholar
Awoyale AA, Lokhat D (2021) Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Sci Reports 11:557. https://doi.org/10.1038/s41598-020-78105-8
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021
Article CAS PubMed PubMed Central Google Scholar
Bertels F, Silander OK, Pachkov M et al (2014) Automated reconstruction of whole-genome phylogenies from short-sequence reads. Molr Biol Evol 31:1077–1088. https://doi.org/10.1093/molbev/msu088
Chander AM, Nair RG, Kaur G et al (2017) Genome insight and comparative pathogenomic analysis of nesterenkonia jeotgali strain cd08_7 isolated from duodenal mucosa of celiac disease patient. Front Microbiol 8:129. https://doi.org/10.3389/fmicb.2017.00129
Article PubMed PubMed Central Google Scholar
Dai D, Lu H, Xing P, Wu Q (2022) Comparative genomic analyses of the genus Nesterenkonia unravels the genomic adaptation to polar extreme environments. Microorganisms 10:233. https://doi.org/10.3390/microorganisms10020233
Article PubMed PubMed Central Google Scholar
Delgado O (2006) Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Sys Evol Microbiol 56:1229–1232. https://doi.org/10.1099/ijs.0.63633-0
Deshavath NN, Mukherjee G, Goud VV et al (2020) Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: interference of furfural and 5-hydroxymethylfurfural. Int J Biol Macromol 156:180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045
Article CAS PubMed Google Scholar
Eliana VM, Mipeshwaree DA, Salam N et al (2019) Nesterenkonia natronophila sp. nov., an alkaliphilic actinobacterium isolated from a soda lake, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 69:1960–1966. https://doi.org/10.1099/ijsem.0.003409
Ghadikolaei KK, Sangachini ED, Vahdatirad V et al (2019) An extreme halophilic xylanase from camel rumen metagenome with elevated catalytic activity in high salt concentrations. AMB Express 9:86. https://doi.org/10.1186/s13568-019-0809-2
Article CAS PubMed PubMed Central Google Scholar
Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0
Article CAS PubMed Google Scholar
Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42:353–375. https://doi.org/10.1093/femsre/fuy009
Article CAS PubMed Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Article CAS PubMed PubMed Central Google Scholar
Habibu A, Pieter DM, Cowan DA (2016) The genome of the antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 92:fiw032–fiw032. https://doi.org/10.1093/femsec/fiw032
Huang J, Wang H, Alam F, Cui Y-W (2019) Granulation of halophilic sludge inoculated with estuarine sediments for saline wastewater treatment. Sci Total Environ 682:532–540. https://doi.org/10.1016/j.scitotenv.2019.05.197
Article CAS PubMed Google Scholar
Huerta-Cepas J, Szklarczyk D, Heller D et al (2018) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085
Article CAS PubMed Central Google Scholar
Jędrzejczyk M, Soszka E, Czapnik M et al (2019) Physical and chemical pretreatment of lignocellulosic biomass. Second Third Gen Feedstocks 143–196. https://doi.org/10.1016/b978-0-12-815162-4.00006-9
Kataeva I, Seidel RD, Shah A et al (2002) The fibronectin type 3-like repeat from the clostridium thermocellum cellobiohydrolase cbha promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol 68:4292–4300. https://doi.org/10.1128/aem.68.9.4292-4300.2002
Article CAS PubMed PubMed Central Google Scholar
Kim DK, Jang YR, Kim KH et al (2011) Isolation and culture properties of a thermophilic agarase-producing strain, Microbulbifer sp. SD-1. Fish Aquat Sci 14:186–191. https://doi.org/10.5657/fas.2011.0186
Kim JY, Lee HW, Lee SM et al (2019) Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresour Technol 279:373–384. https://doi.org/10.1016/j.biortech.2019.01.055
Article CAS PubMed Google Scholar
Lam MQ, Vodovnik M, Zorec M et al (2020a) Robertkochia solimangrovi sp. nov., isolated from mangrove soil, and emended description of the genus Robertkochia. J Syst Evol Microbiol 70:1769–1776. https://doi.org/10.1099/ijsem.0.003970
Lam MQ, Oates NC, Thevarajoo S et al (2020b) Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 112:952–960. https://doi.org/10.1016/j.ygeno.2019.06.011
Article CAS PubMed Google Scholar
Lam MQ, Nik Mut NN, Thevarajoo S et al (2018) Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8: https://doi.org/10.1007/s13205-018-1133-2
Li W-J, Chen H-H, Zhang Y-Q et al (2004) Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. Int J Syst Evol Microbiol 54:837–841. https://doi.org/10.1099/ijs.0.02935-0
Article CAS PubMed Google Scholar
Liew KJ, Zakaria M, Wan C et al (2023) Draft genome sequence of Joostella atrarenae M1–2T with cellulolytic and hemicellulolytic ability. 3 Biotech 13:50. https://doi.org/10.1007/s13205-023-03472-8
Mah MH, Lam MK, Tokiman L et al (2021) Revealing the potential of xylanase from a new halophilic microbulbifer sp. cl37 with paper de-inking ability. Arab Sci Eng 47:6795–6805. https://doi.org/10.1007/s13369-021-06400-1
Marđetko N, Trontel A, Novak M et al (2021) Screening of lignocellulolytic enzyme activities in fungal species and sequential solid-state and submerged cultivation for the production of enzyme cocktails. Polymers 13:3736. https://doi.org/10.3390/polym13213736
Article CAS PubMed PubMed Central Google Scholar
Mujtaba M, Fernandes Fraceto L, Fazeli M et al (2023) Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Cleaner Prod 402:136815. https://doi.org/10.1016/j.jclepro.2023.136815
Nechita P, Roman M, Năstac S (2023) Green approaches on modification of xylan hemicellulose to enhance the functional properties for food packaging materials—a review. Polymers 15:2088. https://doi.org/10.3390/polym15092088
Article CAS PubMed PubMed Central Google Scholar
Numan MTh, Bhosle NB (2005) α-l-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260. https://doi.org/10.1007/s10295-005-0072-1
Comments (0)