Abhishek S, Saikia UN, Gupta A et al (2018) Transcriptional Profile of Mycobacterium tuberculosis in an in vitro Model of Intraocular Tuberculosis. Front Cell Infect Microbiol 8:330. https://doi.org/10.3389/fcimb.2018.00330
Article CAS PubMed PubMed Central Google Scholar
Arya S, Singh P, Kaur J et al (2022) Environment Dependent Expression of Mycobacterium Hormone Sensitive Lipases: Expression Pattern Under ex-vivo and Individual in-vitro Stress Conditions in M. tuberculosis H37Ra. Mol Biol Rep 1–11. https://doi.org/10.1007/s11033-022-07305-4
Balhana RJC, Singla A, Sikder MH et al (2015) Global Analyses of TetR Family Transcriptional Regulators in Mycobacteria Indicates Conservation Across Species and Diversity in Regulated Functions. BMC Genomics 16:1–12. https://doi.org/10.1186/s12864-015-1696-9
Camacho LR, Constant P, Raynaud C et al (2001) Analysis of the Phthiocerol Dimycocerosate Locus of Mycobacterium tuberculosis: Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854. https://doi.org/10.1074/jbc.M100662200
Article CAS PubMed Google Scholar
Colclough AL, Scadden J, Blair JMA (2019) TetR-family Transcription Factors in Gram-negative Bacteria: Conservation, Variation and Implications for Efflux-mediated Antimicrobial Resistance. BMC Genomics 20:1–12. https://doi.org/10.1186/s12864-019-6075-5
Cuthbertson L, Nodwell JR (2013) The TetR Family of Regulators. Microbiol Mol Biol Rev 77:440–475. https://doi.org/10.1128/mmbr.00018-13
Article CAS PubMed PubMed Central Google Scholar
Deb C, Daniel J, Sirakova TD et al (2006) A Novel Lipase Belonging to the Hormone-sensitive Lipase Family Induced Under Starvation to Utilize Stored Triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875. https://doi.org/10.1074/jbc.M505556200
Article CAS PubMed Google Scholar
Freire DM, Gutierrez C, Garza-Garcia A et al (2018) A unique NAD+ phosphorylase toxin triggers bacterial suicide in Mycobacterium tuberculosis. VU Res Portal 129
Fu LM, Fu-Liu CS (2007) The Gene Expression Data of Mycobacterium tuberculosis Based on Affymetrix Gene Chips Provide Insight Into Regulatory and Hypothetical Genes. BMC Microbiol 7:1–11. https://doi.org/10.1186/1471-2180-7-37
García-Morales L, Del Portillo P, Anzola JM et al (2022) The lack of the TetR-like repressor gene BCG_2177c (Rv2160A) May Help Mycobacteria Overcome Intracellular Redox Stress and Survive Longer Inside Macrophages When Surrounded By a Lipid Environment. Front Cell Infect Microbiol 902. https://doi.org/10.3389/fcimb.2022.907890
Geiman DE, Raghunand TR, Agarwal N, Bishai WR (2006) Differential Gene Expression in Response to Exposure to Antimycobacterial Agents and Other Stress Conditions Among Seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 50:2836–2841. https://doi.org/10.1128/aac.00295-06
Article CAS PubMed PubMed Central Google Scholar
Golub SR, Overton TW (2021) Pellicle formation by Escherichia coli K-12: Role of aDhesins and Motility. J Biosci Bioeng 131:381–389. https://doi.org/10.1016/j.jbiosc.2020.12.002
Article CAS PubMed Google Scholar
Gomez JE, Bishai WR (2000) whmD is an Essential Mycobacterial Gene Required for Proper Septation and Cell Division. Proc Natl Acad Sci 97:8554–8559. https://doi.org/10.1073/pnas.140225297
Article CAS PubMed PubMed Central Google Scholar
Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518. https://doi.org/10.1146/annurev.micro.54.1.499
Article CAS PubMed Google Scholar
Ishihama A (2010) Prokaryotic Genome Regulation: Multifactor Promoters, Multitarget Regulators and Hierarchic Networks. FEMS Microbiol Rev 34:628–645. https://doi.org/10.1111/j.1574-6976.2010.00227.x
Article CAS PubMed Google Scholar
Kang J, Xu L, Yang S et al (2013) Effect of phosphoglucosamine mutase on biofilm formation and antimicrobial susceptibilities in M. smegmatis glmM gene knockdown strain. PLoS One 8:e61589. https://doi.org/10.1371/journal.pone.0061589
Kansal RG, Gomez-Flores R, Mehta RT (1998) Change in Colony Morphology Influences the Virulence as Well as the Biochemical Properties of the Mycobacterium avium Complex. Microb Pathog 25:203–214. https://doi.org/10.1006/mpat.1998.0227
Article CAS PubMed Google Scholar
Kjelleberg S, Albertson N, Flärdh K et al (1993) How Do Non-differentiating Bacteria Adapt to Starvation? Antonie Van Leeuwenhoek 63:333–341. https://doi.org/10.1007/BF00871228
Article CAS PubMed Google Scholar
Kumar A, Singh SM, Singh R, Kaur J (2017) Rv0774c, An Iron Stress Inducible, Extracellular Esterase is Involved in Immune-suppression Associated With Altered Cytokine and TLR2 Expression. Int J Med Microbiol 307:126–138. https://doi.org/10.1016/j.ijmm.2017.01.003
Article CAS PubMed Google Scholar
Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular Evolutionary Genetics Analysis Across Computing Platforms. Mol Biol Evol 35:1547. https://doi.org/10.1093%2Fmolbev%2Fmsy096
Liu T, Ramesh A, Ma Z et al (2007) CsoR is a Novel Mycobacterium tuberculosis Copper-sensing Transcriptional Regulator. Nat Chem Biol 3:60–68. https://doi.org/10.1038/nchembio844
Article CAS PubMed Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Masood R, Sharma YK, Venkitasubramanian TA (1985) Metabolism of Mycobacteria. J Biosci 7:421–431. https://doi.org/10.1007/BF02716802
Oliveira NM, Martinez-Garcia E, Xavier J et al (2015) Biofilm Formation As a Response to Ecological Competition. PLoS Biol 13:e1002191. https://doi.org/10.1371/journal.pbio.1002191
Article CAS PubMed PubMed Central Google Scholar
Parish T, Stoker NG (1998) Mycobacteria Protocols. Springer
Ramos JL, Martínez-Bueno M, Molina-Henares AJ et al (2005) The TetR Family of Transcriptional Repressors. Microbiol Mol Biol Rev 69:326–356. https://doi.org/10.1128/mmbr.69.2.326-356.2005
Article CAS PubMed PubMed Central Google Scholar
Richter L, Saviola B (2009) The LipF Promoter of Mycobacterium tuberculosis is Upregulated Specifically By Acidic pH But Not By Other Stress Conditions. Microbiol Res 164:228–232. https://doi.org/10.1016/j.micres.2007.06.003
Article CAS PubMed Google Scholar
Rodrigue S, Provvedi R, Jacques P-E et al (2006) The σ Factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941. https://doi.org/10.1111/j.1574-6976.2006.00040.x
Article CAS PubMed Google Scholar
Rojo F (1999) Repression of Transcription Initiation in Bacteria. J Bacteriol 181:2987–2991. https://doi.org/10.1128/jb.181.10.2987-2991.1999
Article CAS PubMed PubMed Central Google Scholar
Sachdeva P, Misra R, Tyagi AK, Singh Y (2010) The Sigma Factors of Mycobacterium tuberculosis: Regulation of the Regulators. FEBS J 277:605–626. https://doi.org/10.1111/j.1742-4658.2009.07479.x
Article CAS PubMed Google Scholar
Shimada T, Katayama Y, Kawakita S et al (2012) A Novel Regulator RcdA of the csgD Gene Encoding the Master Regulator of Biofilm Formation in Escherichia coli. Microbiology Open 1:381–394. https://doi.org/10.1002/mbo3.42
Article CAS PubMed PubMed Central Google Scholar
Singh G, Arya S, Kumar A et al (2014) Molecular Characterization of the Oxidative Stress Inducible LipD of Mycobacterium tuberculosis H37Rv. Curr Microbiol 68:387–396
Article CAS PubMed Google Scholar
Singh G, Kumar A, Arya S et al (2016) Characterization of a Novel Esterase Rv1497 of Mycobacterium tuberculosis H37Rv Demonstrating β-lactamase Activity. Enzyme Microb Technol 82:180–190. https://doi.org/10.1016/j.enzmictec.2015.10.007
Comments (0)