Takeda K, Sakurawi K, Ishii H (1972) Components of the Lauraceae family-I: New lactonic compounds from Litsea japonicia. Tetrahedron 28:3757–3766
Niwa M, Iguchi M, Yamamura S (1975) Three new obtusilactones from Lindera obtusiloba blume. Chem Lett 4:655–658
Niwa M, Iguchi M, Yamamura S (1977) The isolation and structure of C19-ontusilactone dimer. Chem Lett 6:581–582
Martine VCJ, Yoshida M, Gottlieb OR (1979) Six groups of ω-ethenyl- and ω-ethynyl-α-alkylidene-γ-lactones. Tetrahedron Lett 12:1021–1024
Martine VCJ, Yoshida M, Gottlieb OR (1981) ω-Ethyl, ω-ethenyl and ω-ethynyl-α-alkylidene-γ-lactones from Clinostemon mahuba. Phytochemistry 20:459–464
Tanaka H, Nakamura T, Ichino K, Ito K, Tanaka T (1990) Butanolides from Litsea japonica. Phytochemistry 29:857–859
Abrell LM, Borgeson B, Crews P (1996) Chloro polyketides from the cultured fungus (Aspergillus) separated from a marine sponge. Tetrahedron Lett 37:2331–2334
Zhao Y, Guo Y-W, Zhang W (2005) Rotundifolides A and B, two ew enol-derived Butenolactones from the Bark of Litsea rotundifplia var. oblongifolia. Helv Chim Acta 88:349–353
Cheng W, Zhu C, Xu W, Fan X, Tang Y, Li Y, Chen X, Wang W, Shi J (2009) Chemical constituents of the bark of Machilus wangchiana and their biological activities. J Nat Prod 72:2145–2152
Article CAS PubMed Google Scholar
El-Kashef DH, Daletos G, Plenker M, Hartmann R, Mandi A, Kurtan T, Weber H, Lin W, Ancheeva E, Proksch P (2019) Polyketides and a dihydroquinolones alkaloid from a arine-derived strain of the fungus Metarhizium marquandii. J Nat Prod 82:2460–2469
Article CAS PubMed Google Scholar
Ahn S, Basavana Gowda MK, Lee M, Masagalli JN, Mailar K, Choi WJ, Noh M (2020) Novel linked butanolide dimer compounds increase adiponectin production during adipogenesis in human mesenchymal stem cells through peroxisome proliferator-activated receptor γ modulation. Eur J Med Chem 187:111969. https://doi.org/10.1021/acs.jnatprod.9b00125
Article CAS PubMed Google Scholar
Lee J, Mailar K, Yoo O-K, Choi WJ, Keum Y-S (2018) Marliolide inhibits skin carcinogenesis by activating NRF2/ARE to induce heme oxygenase-1. Eur J Med Chem 150:113–126
Article CAS PubMed Google Scholar
Ngo Q-MT, Cao TQ, Tran P-L, Kim JA, Seo S-T, Kim J-C, Woo MH, Lee JH, Min BS (2018) Lactones from the pericarps of Litsea japonica and their anti-inflammatory activities. Bioorg Med Chem Lett 28:2109–2115
Article CAS PubMed Google Scholar
Yang C-P, Huang G-J, Huang H-C, Chen Y-C, Chan C-I, Wang S-Y, Chang H-S, Tseng Y-H, Chien S-C, Kuo Y-H (2013) The effect of the aerial part of Litsea akoensis on lipopolysaccharides (LPS)-induces nitric oxide production in RAW264.7 cells. Int J Mol Sci 14:9168–9181. https://doi.org/10.3390/ijms14059168
Article CAS PubMed PubMed Central Google Scholar
Kim NY, Ryu J-H (2003) Butanolides from Machilus thunbergii and their inhibitory activity on nitric oxide synthesis in activated macrophages. Phytother Res 17:372–375. https://doi.org/10.1002/ptr.1160
Article CAS PubMed Google Scholar
Tsai I-L, Hung C-H, Duh C-Y, Chen J-H, Lin W-Y, Chen I-S (2001) Cytotoxic butanolides from the stem bark of formosan Lindera communis. Planta Med 67:865–867
Article CAS PubMed Google Scholar
Chang S-Y, Cheng M-J, Kuo Y-H, Lee S-J, Chang H-S, Chen I-S (2008) Scondary metabolites from the stem bark of Litsea akoensis and their cytotoxic activity. Helv Chim Acta 91:1156–1165
Ngo Q-MT, Cao TQ, Woo MH, Byung S (2019) Cytotoxic lactones from the pericarps of Litsea japonica. Nat Prod Sci 25:23–27
Masi M, Lecce RD, Marsico G, Linaldeddu BT, Maddau L, Superchi S, Evidente A (2021) Pinofuranoxins A and B, bioactive trisubstituted furanones produced by the invasive pathogen Diplodia saponea. J Nat Prod 84:2600–2605
Article CAS PubMed PubMed Central Google Scholar
Hehre WJ, Kuunzinger P, Deppmeier B, Driessen A, Uchida N, Hashimoto M, Fukushi E, Takata Y (2019) Efficient protocol for accurately calculating 13C chemical shifts of conformationally flexible natural products: scope, assessment, and limitations. J Nat Prod 82:2299–2306
Article CAS PubMed Google Scholar
Smith SG, Goodman JM (2010) Assigning stereochemistry to single diastereomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 132:12946–12959. https://doi.org/10.1021/ja105035r
Article CAS PubMed Google Scholar
Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011
Klamt A (2018) The COSMO and COSMO-RS solvation models. Wiley Interdiscip Rev Comput Mol Sci 8:e1338. https://doi.org/10.1002/wcms.1338
Harcken C, Bruckner R (2001) Stereopure 1,3-butadiene-2-carboxylates and their conversion into non-racemic α-alkylidenebutyrolactone natural products by asymmetric dihydroxylation. Tetrahedron Lett 42:3967–3971. https://doi.org/10.1016/50040-4039(01)00598-6
Wakabayashi S, Ogawa H, Ueno N, Kunieda N, Mandai T, Nokami J (1987) Synthesis optically active litsenolide C. Chem Lett 16:875–878. https://doi.org/10.1246/cl.1987.875
Chen M-J, Lo C-Y, Chin C-C, Liu R-S (2000) Total synthesis of (+)-blastmycinone, (-)-litsenolide C1, and related natural trisubstituted lactones via alkynyltungsten compounds. J Org Chem 65:6362–6367. https://doi.org/10.1021/jo0002487
Article CAS PubMed Google Scholar
Ramachandran PV, Rudd MT, Burghardt TE, Reddy MVR (2003) Vinylalumination for the synthesis of functionalized ally alcohols, vinylepoxides, and α-alkylidene-β-hydroxy-γ-lactones. J Org Chem 68:9310–9316. https://doi.org/10.1021/jo034954u
Article CAS PubMed Google Scholar
Davoust M, Cantagrel F, Metzner P, Briere J-F (2008) A stereodivergent synthesis of β-hydroxy-α-methylene lactones via vinyl epoxides. Org Biomol Chem 6:1981–1993
Article CAS PubMed Google Scholar
Kitson RRA, Millemaggi A, Taylor RJK (2009) The renaissance of α-methylene-γ-butyrolactones: new synthetic approaches. Angew Chem Int Ed 48:9426–9451. https://doi.org/10.1002/anie.200903108
Lee SI, Jang JH, Hwang G-S, Ryu DH (2013) Asymmetric synthesis of α-alkylidene-β-hydroxy-γ-butyrolactones via enantioselective tandem Michael-aldol reaction. J Org Chem 78:770–775. https://doi.org/10.1021/jo302369q
Article CAS PubMed Google Scholar
Kutsumura N, Inagaki M, Kiriseko A, Saito T (2019) Total synthesis of 3-epi-jurunolide C. Chem Phram Bull 67:594–598
Pons D, Sarignac M, Genet JP (1990) Efficient syntheses of enantiomerically pure L and D-allothreonines and (S) and (R) isoserines. Tetrahedron Lett 31:5023–5026. https://doi.org/10.1016/S0040-4039(00)97795-5
Lee S, MacMillan DWC (2006) Enantioselective organocatalytic epoxidation using hypervalent io
Comments (0)