The effects of exercise and mitochondrial transplantation alone or in combination against Doxorubicin-induced skeletal muscle atrophy

Akın Ş, Kubat GB, Demirel HA (2021) Exercise, mitochondrial biogenesis and disuse-induced atrophy. Spor Hekimliği Dergisi 56(2):091–097

Google Scholar 

Alway SE, Paez HG, Pitzer CR, Ferrandi PJ, Khan MM, Mohamed JS, Carson JA, Deschenes MR (2023) Mitochondria transplant therapy improves regeneration and restoration of injured skeletal muscle. J Cachexia Sarcopenia Muscle 14(1):493–507. https://doi.org/10.1002/jcsm.13153

Article  PubMed  PubMed Central  Google Scholar 

Asensio-López MC, Soler F, Pascual-Figal D, Fernández-Belda F, Lax A (2017) Doxorubicin-induced oxidative stress: the protective effect of nicorandil on HL-1 cardiomyocytes. PLoS ONE 12(2):e0172803. https://doi.org/10.1371/journal.pone.0172803

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campelj DG, Debruin DA, Timpani CA, Hayes A, Goodman CA, Rybalka E (2020) Sodium nitrate co-supplementation does not exacerbate low dose metronomic doxorubicin-induced cachexia in healthy mice. Sci Rep 10(1):15044. https://doi.org/10.1038/s41598-020-71974-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Dériaz O, Zorzano A, Gobelet C, Kralli A, Russell AP (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567(Pt 1):349–358. https://doi.org/10.1113/jphysiol.2005.092031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang J-C, Chang H-S, Wu Y-C, Cheng W-L, Lin T-T, Chang H-J, Kuo S-J, Chen S-T, Liu C-S (2019) Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J Experimental Clin Cancer Res 38(1):30. https://doi.org/10.1186/s13046-019-1028-z

Article  Google Scholar 

Cipryan L (2018) The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of high-intensity interval training. J Sport Health Sci 7(3):363–371. https://doi.org/10.1016/j.jshs.2016.11.001

Article  PubMed  Google Scholar 

Cloer CM, Givens CS, Buie LK, Rochelle LK, Lin Y-T, Popa S, Shelton RVM, Zhan J, Zimmerman TR, Jones BG, Lesesne Z, Hogan SS, Petersen TH (2023) Mitochondrial transplant after ischemia reperfusion promotes cellular salvage and improves lung function during ex-vivo lung perfusion. J Heart Lung Transplantation. https://doi.org/10.1016/j.healun.2023.01.002

Article  Google Scholar 

D’Amato M, Morra F, Di Meo I, Tiranti V (2023) Mitochondrial transplantation in mitochondrial medicine: current challenges and Future perspectives. Int J Mol Sci 24(3). https://doi.org/10.3390/ijms24031969

Di Francesco M, Celia C, Cristiano MC, d’Avanzo N, Ruozi B, Mircioiu C, Cosco D, Di Marzio L, Fresta M (2021) Doxorubicin hydrochloride-loaded nonionic surfactant vesicles to treat metastatic and non-metastatic breast Cancer. ACS Omega 6(4):2973–2989. https://doi.org/10.1021/acsomega.0c05350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, Wen L, Liu S, Ji LL, Zhang Y (2010) Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim et Biophys Acta (BBA) - Gen Subj 1800(3):250–256. https://doi.org/10.1016/j.bbagen.2009.08.007

Article  CAS  Google Scholar 

Dirks-Naylor A, Yang S, Kouzi S (2014) The effects of doxorubicin on the mitochondrial dynamics and mitophagy machinery in varying types of skeletal muscles (1164.1). FASEB J 28(S1):1164. https://doi.org/10.1096/fasebj.28.1_supplement.1164.1

Article  Google Scholar 

Doerr V, Montalvo RN, Kwon OS, Talbert EE, Hain BA, Houston FE, Smuder AJ (2020) Prevention of Doxorubicin-Induced Autophagy attenuates oxidative stress and skeletal muscle dysfunction. Antioxid (Basel) 9(3). https://doi.org/10.3390/antiox9030263

Fang S-Y, Roan J-N, Lee J-S, Chiu M-H, Lin M-W, Liu C-C, Lam C-F (2021) Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia. J Thorac Cardiovasc Surg 161(5):e337–e347. https://doi.org/10.1016/j.jtcvs.2019.10.151

Article  CAS  PubMed  Google Scholar 

Gilliam LAA, Fisher-Wellman KH, Lin CT, Maples JM, Cathey BL, Neufer PD (2013) The anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radic Biol Med 65:988–996. https://doi.org/10.1016/j.freeradbiomed.2013.08.191

Article  CAS  PubMed  Google Scholar 

Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ (2017) Sprint-interval but not continuous exercise increases PGC-1α protein content and p53 phosphorylation in nuclear fractions of human skeletal muscle. Sci Rep 7:44227. https://doi.org/10.1038/srep44227

Article  PubMed  PubMed Central  Google Scholar 

He N, Ye H (2020) Exercise and muscle atrophy. Adv Exp Med Biol 1228:255–267. https://doi.org/10.1007/978-981-15-1792-1_17

Article  CAS  PubMed  Google Scholar 

Hiensch AE, Bolam KA, Mijwel S, Jeneson JAL, Huitema ADR, Kranenburg O, van der Wall E, Rundqvist H, Wengstrom Y, May AM (2020) Doxorubicin-induced skeletal muscle atrophy: elucidating the underlying molecular pathways. Acta Physiol (Oxf) 229(2):e13400. https://doi.org/10.1111/apha.13400

Article  CAS  PubMed  Google Scholar 

Hyatt HW, Powers SK (2021) Mitochondrial dysfunction is a common denominator linking skeletal muscle wasting due to Disease, Aging, and prolonged inactivity. Antioxid (Basel) 10(4). https://doi.org/10.3390/antiox10040588

Jain R, Begum N, Rajan S, Tryphena KP, Khatri DK (2024) Role of F-actin-mediated endocytosis and exercise in mitochondrial transplantation in an experimental Parkinson’s disease mouse model. Mitochondrion 74:101824. https://doi.org/10.1016/j.mito.2023.11.007

Article  CAS  PubMed  Google Scholar 

Johnson-Arbor K, Dubey R (2022) Doxorubicin. In StatPearls. StatPearls Publishing. Copyright 2022 © StatPearls Publishing LLC

Kang C, Li Ji L (2012) Role of PGC-1α signaling in skeletal muscle health and disease. Ann N Y Acad Sci 1271(1):110–117. https://doi.org/10.1111/j.1749-6632.2012.06738.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kavazis AN, Smuder AJ, Min K, Tümer N, Powers SK (2010) Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72. Am J Physiol Heart Circ Physiol 299(5):H1515–H1524. https://doi.org/10.1152/ajpheart.00585.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kavazis AN, Smuder AJ, Powers SK (2014) Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. J Appl Physiol (1985) 117(3):223–230. https://doi.org/10.1152/japplphysiol.00210.2014

Article  CAS  PubMed  Google Scholar 

Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R (2023) Doxorubicin-An Agent with multiple mechanisms of Anticancer Activity. Cells 12(4). https://doi.org/10.3390/cells12040659

Khan T, Waseem R, Zehra Z, Aiman A, Bhardwaj P, Ansari J, Hassan MI, Islam A (2022) Mitochondrial dysfunction: pathophysiology and mitochondria-targeted drug delivery approaches. Pharmaceutics 14(12). https://doi.org/10.3390/pharmaceutics14122657

Kim MJ, Hwang JW, Yun C-K, Lee Y, Choi Y-S (2018) Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep 8(1):3330. https://doi.org/10.1038/s41598-018-21539-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim MJ, Lee JM, Min K, Choi YS (2023) Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil. https://doi.org/10.1007/s10974-023-09643-7

Article  PubMed  PubMed Central  Google Scholar 

Kubat GB, Tuncer M (2024) Doxorubicin-dependent skeletal muscle atrophy: exercise and mitochondrial dysfunction. Spor Hekimliği Dergisi 59(1):039–043

Google Scholar 

Kubat GB, Ozler M, Ulger O, Ekinci O, Atalay O, Celik E, Safali M, Budak MT (2021a) The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicin-mediated nephrotoxicity in rats. J Biochem Mol Toxicol 35(1):e22612. https://doi.org/10.1002/jbt.22612

Article  CAS  PubMed  Google Scholar 

Kubat GB, Ulger O, Akin S (2021b) Requirements for successful mitochondrial transplantation. J Biochem Mol Toxicol 35(11):e22898. https://doi.org/10.1002/jbt.22898

Article  CAS  PubMed  Google Scholar 

Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Sahin N, Morciano B, Tuncer G, Tremoli M, E., Pinton P (2023) Mitochondrial dysfunction and skeletal muscle atrophy: causes, mechanisms, and treatment strategies. Mitochondrion 72:33–58. https://doi.org/10.1016/j.mito.2023.07.003

Article  CAS  PubMed  Google Scholar 

Kwon I (2020) Pr

Comments (0)

No login
gif
Back To Top