Myocardial work by pressure-strain loop is associated with molecular imaging of fibroblast activation in hypertensive hearts using 99mTc-HFAPI SPECT

Group SR, Wright JT Jr., Williamson JD et al (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116. https://doi.org/10.1056/NEJMoa1511939

Article  CAS  Google Scholar 

Rapsomaniki E, Timmis A, George J et al (2014) Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383:1899–1911. https://doi.org/10.1016/S0140-6736(14)60685-1

Article  PubMed  PubMed Central  Google Scholar 

Levy D, Larson MG, Vasan RS et al (1996) The progression from hypertension to congestive heart failure. JAMA 275:1557–1562

Article  CAS  PubMed  Google Scholar 

Yildiz M, Oktay AA, Stewart MH et al (2020) Left ventricular hypertrophy and hypertension. Prog Cardiovasc Dis 63:10–21. https://doi.org/10.1016/j.pcad.2019.11.009

Article  PubMed  Google Scholar 

Iwanaga Y, Aoyama T, Kihara Y et al (2002) Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol 39:1384–1391. https://doi.org/10.1016/s0735-1097(02)01756-4

Article  CAS  PubMed  Google Scholar 

Iyer NR, Le TT, Kui MSL et al (2022) Markers of focal and diffuse nonischemic myocardial fibrosis are Associated with adverse cardiac remodeling and prognosis in patients with hypertension: the REMODEL study. Hypertension 79:1804–1813. https://doi.org/10.1161/HYPERTENSIONAHA.122.19225

Article  CAS  PubMed  Google Scholar 

Lopez B, Ravassa S, Gonzalez A et al (2016) Myocardial collagen cross-linking is Associated with Heart failure hospitalization in patients with Hypertensive Heart failure. J Am Coll Cardiol 67:251–260. https://doi.org/10.1016/j.jacc.2015.10.063

Article  CAS  PubMed  Google Scholar 

Xie B, Wang J, Xi XY et al (2022) Fibroblast activation protein imaging in reperfused ST-elevation myocardial infarction: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 49:2786–2797. https://doi.org/10.1007/s00259-021-05674-9

Article  CAS  PubMed  Google Scholar 

Altmann A, Haberkorn U, Siveke J (2021) The latest developments in imaging of fibroblast activation protein. J Nucl Med 62:160–167. https://doi.org/10.2967/jnumed.120.244806

Article  CAS  PubMed  Google Scholar 

Qin C, Shao F, Gai Y et al (2022) (68)Ga-DOTA-FAPI-04 PET/MR in the evaluation of gastric carcinomas: comparison with (18)F-FDG PET/CT. J Nucl Med 63:81–88. https://doi.org/10.2967/jnumed.120.258467

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frangogiannis NG (2019) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 65:70–99. https://doi.org/10.1016/j.mam.2018.07.001

Article  CAS  PubMed  Google Scholar 

Altekin RE, Yanikoglu A, Baktir AO et al (2012) Assessment of subclinical left ventricular dysfunction in obstructive sleep apnea patients with speckle tracking echocardiography. Int J Cardiovasc Imaging 28:1917–1930. https://doi.org/10.1007/s10554-012-0026-4

Article  PubMed  Google Scholar 

Mandoli GE, Borrelli C, Cameli M et al (2022) Speckle tracking echocardiography in heart failure development and progression in patients with apneas. Heart Fail Rev 27:1869–1881. https://doi.org/10.1007/s10741-021-10197-4

Article  PubMed  Google Scholar 

Burns AT, La Gerche A, D’Hooge J et al (2010) Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr 11:283–289. https://doi.org/10.1093/ejechocard/jep214

Article  PubMed  Google Scholar 

Liao L, Shi B, Ding Z et al (2022) Echocardiographic study of myocardial work in patients with type 2 diabetes mellitus. BMC Cardiovasc Disord 22:59. https://doi.org/10.1186/s12872-022-02482-3

Article  PubMed  PubMed Central  Google Scholar 

Williams B, Mancia G, Spiering W et al (2018) 2018 ESC/ESH guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 36:1953–2041. https://doi.org/10.1097/HJH.0000000000001940

Article  CAS  PubMed  Google Scholar 

Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39e14. https://doi.org/10.1016/j.echo.2014.10.003

Article  PubMed  Google Scholar 

Negishi K, Negishi T, Kurosawa K et al (2015) Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging 8:489–492. https://doi.org/10.1016/j.jcmg.2014.06.013

Article  PubMed  Google Scholar 

Hubert A, Le Rolle V, Leclercq C et al (2018) Estimation of myocardial work from pressure-strain loops analysis: an experimental evaluation. Eur Heart J Cardiovasc Imaging 19:1372–1379. https://doi.org/10.1093/ehjci/jey024

Article  PubMed  Google Scholar 

Xie B, Li L, Lin M et al (2023) 99mTc-HFAPi imaging identifies early myocardial fibrosis in the hypertensive heart. J Hypertens 41:1645–1652. https://doi.org/10.1097/HJH.0000000000003517

Article  CAS  PubMed  Google Scholar 

Gonzalez A, Schelbert EB, Diez J et al (2018) Myocardial interstitial fibrosis in Heart failure: Biological and translational perspectives. J Am Coll Cardiol 71:1696–1706. https://doi.org/10.1016/j.jacc.2018.02.021

Article  PubMed  Google Scholar 

Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549–574. https://doi.org/10.1007/s00018-013-1349-6

Article  CAS  PubMed  Google Scholar 

Mori Y, Dendl K, Cardinale J et al (2023) FAPI PET: fibroblast activation protein inhibitor use in oncologic and nononcologic disease. Radiology 306:e220749. https://doi.org/10.1148/radiol.220749

Article  PubMed  Google Scholar 

Dendl K, Finck R, Giesel FL et al (2022) FAP imaging in rare cancer entities-first clinical experience in a broad spectrum of malignancies. Eur J Nucl Med Mol Imaging 49:721–731. https://doi.org/10.1007/s00259-021-05488-9

Article  CAS  PubMed  Google Scholar 

Hathi DK, Jones EF (2019) (68)Ga FAPI PET/CT: Tracer Uptake in 28 different kinds of Cancer. Radiol Imaging Cancer 1:e194003. https://doi.org/10.1148/rycan.2019194003

Article  PubMed  PubMed Central  Google Scholar 

Pang Y, Zhao L, Luo Z et al (2021) Comparison of (68)Ga-FAPI and (18)F-FDG uptake in gastric, duodenal, and colorectal cancers. Radiology 298:393–402. https://doi.org/10.1148/radiol.2020203275

Article  PubMed  Google Scholar 

Song W, Zhang X, He S et al (2023) (68)Ga-FAPI PET visualize heart failure: from mechanism to clinic. Eur J Nucl Med Mol Imaging 50:475–485. https://doi.org/10.1007/s00259-022-05994-4

Article  CAS  PubMed  Google Scholar 

Wang G, Yang Q, Wu S et al (2023) Molecular imaging of fibroblast activity in pressure overload heart failure using [(68) Ga]Ga-FAPI-04 PET/CT. Eur J Nucl Med Mol Imaging 50:465–474. https://doi.org/10.1007/s00259-022-05984-6

Article  CAS  PubMed  Google Scholar 

Heckmann MB, Reinhardt F, Finke D et al (2020) Relationship between Cardiac Fibroblast activation protein activity by Positron Emission Tomography and Cardiovascular Disease. Circ Cardiovasc Imaging 13:e010628. https://doi.org/10.1161/CIRCIMAGING.120.010628

Article 

Comments (0)

No login
gif