Targeting CERS6-AS1/FGFR1 axis as synthetic vulnerability to constrain stromal cells supported proliferation in Mantle cell lymphoma

Vose JM. Mantle cell lymphoma: 2013 Update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2013;88:1082–8.

Article  CAS  PubMed  Google Scholar 

Jain N, Mamgain M, Chowdhury SM, Jindal U, Sharma I, Sehgal L, et al. Beyond Bruton’s tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody-drug conjugates, CAR T-cells, and novel agents. J Hematol Oncol. 2023;16:99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avyakta Kallam M, Vose JM. Current treatments in mantle cell lymphoma. Oncology. 2023;37:326–33.

Google Scholar 

Bukhari A, El Chaer F, Koka R, Singh Z, Hutnick E, Ruehle K, et al. Rapid relapse of large B-cell lymphoma after CD19 directed CAR-T-cell therapy due to CD-19 antigen loss. Am J Hematol. 2019;94:E273–E5.

Article  PubMed  Google Scholar 

Mathur R, Sehgal L, Braun FK, Berkova Z, Romaguerra J, Wang M, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63.

Article  PubMed  PubMed Central  Google Scholar 

Kumar A, Sha F, Toure A, Dogan A, Ni A, Batlevi CL, et al. Patterns of survival in patients with recurrent mantle cell lymphoma in the modern era: progressive shortening in response duration and survival after each relapse. Blood Cancer J. 2019;9:50.

Article  PubMed  PubMed Central  Google Scholar 

George B, Chowdhury SM, Hart A, Sircar A, Singh SK, Nath UK, et al. Ibrutinib resistance mechanisms and treatment strategies for B-Cell lymphomas. Cancers. 2020;12:1328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29:591–9.

Article  PubMed  PubMed Central  Google Scholar 

Le Bris Y, Normand A, Bouard L, Menard A, Bossard C, Moreau A, et al. Aggressive, early resistant and relapsed mantle cell lymphoma distinct extrinsic microenvironment highlighted by transcriptome analysis. EJHaem. 2022;3:1165–71.

Article  PubMed  PubMed Central  Google Scholar 

Esmeray Sonmez E, Hatipoglu T, Kursun D, Hu X, Akman B, Yuan H, et al. Whole transcriptome sequencing reveals cancer-related, prognostically significant transcripts and tumor-infiltrating immunocytes in mantle cell lymphoma. Cells. 2022;11:3394.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medina DJ, Goodell L, Glod J, Gelinas C, Rabson AB, Strair RK. Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor kappaB pathways. Haematologica. 2012;97:1255–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain P, Nomie K, Kotlov N, Segodin V, Hill H, Ok CY, et al. Immune-depleted tumor microenvironment is associated with poor outcomes and BTK inhibitor resistance in mantle cell lymphoma. Blood Cancer J. 2023;13:156.

Article  PubMed  PubMed Central  Google Scholar 

Sircar A, Singh S, Xu-Monette ZY, Coyle KM, Hilton LK, Chavdoula E, et al. Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma. Leukemia. 2023;37:2094–106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Araujo-Ayala F, Dobano-Lopez C, Valero JG, Nadeu F, Gava F, Faria C, et al. A novel patient-derived 3D model recapitulates mantle cell lymphoma lymph node signaling, immune profile and in vivo ibrutinib responses. Leukemia. 2023;37:1311–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sadeghi L, Wright APH. GSK-J4 inhibition of KDM6B histone demethylase blocks adhesion of mantle cell lymphoma cells to stromal cells by modulating NF-kappaB signaling. Cells. 2023;12:2010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer. 2022;21:58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, et al. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther. 2020;5:102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gholami A, Farhadi K, Sayyadipour F, Soleimani M, Saba F. Long noncoding RNAs (lncRNAs) in human lymphomas. Genes Dis. 2022;9:900–14.

Article  CAS  PubMed  Google Scholar 

Khanmohammadi S, Fallahtafti P. Long non-coding RNA as a novel biomarker and therapeutic target in aggressive B-cell non-Hodgkin lymphoma: A systematic review. J Cell Mol Med. 2023;27:1928–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu G, Gupta SK, Troska TP, Nair A, Gupta M. Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex. Oncotarget. 2017;8:80223–34.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Sehgal L, Jain N, Khashab T, Mathur R, Samaniego F. LncRNA MALAT1 promotes development of mantle cell lymphoma by associating with EZH2. J Transl Med. 2016;14:346.

Article  PubMed  PubMed Central  Google Scholar 

Tao HF, Shen JX, Hou ZW, Chen SY, Su YZ, Fang JL. lncRNA FOXP4‑AS1 predicts poor prognosis and accelerates the progression of mantle cell lymphoma through the miR‑423‑5p/NACC1 pathway. Oncol Rep. 2021;45:469–80.

Article  CAS  PubMed  Google Scholar 

Fan Z, Wang X, Li P, Mei C, Zhang M, Zhao C. Overexpression of lncRNA GATA6-AS inhibits cancer cell proliferation in mantle cell lymphoma by downregulating GLUT1. Oncol Lett. 2019;18:2443–7.

CAS  PubMed  PubMed Central  Google Scholar 

Tang X, Long Y, Xu L, Yan X. LncRNA MORT inhibits cancer cell proliferation and promotes apoptosis in mantle cell lymphoma by upregulating miRNA-16. Cancer Manag Res. 2020;12:2119–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rastad H, Samimisedeh P, Alan MS, Afshar EJ, Ghalami J, Hashemnejad M, et al. The role of lncRNA CERS6-AS1 in cancer and its molecular mechanisms: a systematic review and meta-analysis. Pathol Res Pr. 2023;241:154245.

Article  CAS  Google Scholar 

Yun Z, Meng F, Li S, Zhang P. Long non-coding RNA CERS6-AS1 facilitates the oncogenicity of pancreatic ductal adenocarcinoma by regulating the microRNA-15a-5p/FGFR1 axis. Aging (Albany NY). 2021;13:6041–54.

Article  CAS  PubMed  Google Scholar 

Xu J, Wang J, He Z, Chen P, Jiang X, Chen Y, et al. LncRNA CERS6-AS1 promotes proliferation and metastasis through the upregulation of YWHAG and activation of ERK signaling in pancreatic cancer. Cell Death Dis. 2021;12:648.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu B, Wei Y, Liu F, Li L, Zhou S, Peng Y, et al. Long noncoding RNA CERS6-AS1 modulates glucose metabolism and tumor progression in hepatocellular carcinoma by promoting the MDM2/p53 signaling pathway. Cell Death Discov. 2022;8:348.

Article  CAS 

Comments (0)

No login
gif