Renal papillary tip biopsy in stone formers: a review of clinical safety and insights

Randall A (1937) The origin and growth of renal calculi. Ann Surg 105(6):1009–1027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul E, Albert A, Ponnusamy S et al (2018) Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group II intron degrades intestinal oxalate in hyperoxaluric rats. Microbiol Res 215:65–75

Article  CAS  PubMed  Google Scholar 

Hatch M, Canales BK (2016) The mechanistic basis of hyperoxaluria following gastric bypass in obese rats. Urolithiasis 44:221–230

Article  CAS  PubMed  Google Scholar 

Sun AY, Hinck B, Cohen BR et al (2018) Inflammatory cytokines in the papillary tips and urine of nephrolithiasis patients. J Endourol 32:236–244

Article  PubMed  Google Scholar 

Evan AP, Lingeman JE, Coe FL et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasikumar P, Gomathi S, Anbazhagan K et al (2014) Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci 21:86

Article  PubMed  PubMed Central  Google Scholar 

Kuo RL, Lingeman JE, Evan AP et al (2003) Endoscopic renal papillary biopsies: a tissue retrieval technique for histological studies in patients with nephrolithiasis. J Urol 170:2186–2189

Article  PubMed  Google Scholar 

Ruggera L, Gambaro G, Beltrami P et al (2011) Percutaneous and transureteral biopsies of renal papillae: safe and appropriate procedures for in vivo histologic analysis in stone formers. J Endourol 25:25–30

Article  PubMed  Google Scholar 

Taguchi K, Hamamoto S, Okada A et al (2017) Genome-wide gene expression profiling of Randall’s plaques in Calcium Oxalate Stone formers. J Am Soc Nephrol 28:333–347

Article  CAS  PubMed  Google Scholar 

Taguchi K, Usawachintachit M, Hamamoto S et al (2017) Optimizing RNA extraction of renal papilla biopsy tissue in kidney stone formers: a new methodology for genomic study. J Endourol 31:922–929

Article  PubMed  PubMed Central  Google Scholar 

Taguchi K, Chen L, Usawachintachit M et al (2020) Fatty acid-binding protein 4 downregulation drives calcification in the development of kidney stone disease. Kidney Int 97:1042–1056

Article  CAS  PubMed  Google Scholar 

Evan AE, Lingeman JE, Coe FL et al (2008) Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int 74:223–229

Article  CAS  PubMed  Google Scholar 

Evan AP, Lingeman JE, Coe FL et al (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591

Article  CAS  PubMed  Google Scholar 

Viers BR, Lieske JC, Vrtiska TJ et al (2015) Endoscopic and histologic findings in a cohort of uric acid and calcium oxalate stone formers. Urology 85:771–776

Article  PubMed  Google Scholar 

Evan AP, Coe FL, Worcester EM et al (2020) Discrepancy between stone and tissue mineral type in patients with idiopathic uric acid stones. J Endourol 34:385–393

Article  PubMed  PubMed Central  Google Scholar 

Evan AP, Lingeman JE, Coe FL et al (2009) Intra-tubular deposits, urine and stone composition are divergent in patients with ileostomy. Kidney Int 76:1081–1088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evan AP, Lingeman JE, Worcester EM et al (2014) Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat Rec (Hoboken) 297:731–748

Article  CAS  PubMed  Google Scholar 

Evan AP, Worcester EM, Williams JC et al (2015) Biopsy proven medullary sponge kidney: clinical findings, histopathology, and role of osteogenesis in stone and plaque formation. Anat Rec (Hoboken) 298:865–877

Article  PubMed  Google Scholar 

Evan AP, Lingeman J, Coe F et al (2007) Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int 71:795–801

Article  CAS  PubMed  Google Scholar 

Evan AP, Coe FL, Lingeman JE et al (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227–2235

Article  CAS  PubMed  Google Scholar 

Jaeger CD, Rule AD, Mehta RA et al (2016) Endoscopic and pathologic characterization of papillary architecture in struvite stone formers. Urology 90:39–44

Article  PubMed  Google Scholar 

Evan AP, Bledsoe S, Worcester EM et al (2007) Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int 72:1503–1511

Article  CAS  PubMed  Google Scholar 

Evan AP, Coe FL, Lingeman JE et al (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken) 290:1315–1323

Article  CAS  PubMed  Google Scholar 

Evan AP, Coe FL, Gillen D et al (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat Rec (Hoboken) 291:325–334

Article  PubMed  Google Scholar 

Evan AP, Lingeman JE, Worcester EM et al (2010) Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int 78:310–317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makki MS, Winfree S, Lingeman JE et al (2020) A precision medicine approach uncovers a unique signature of neutrophils in patients with brushite kidney stones. Kidney Int Rep 5:663–677

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Kumar S, Jayachandran M et al (2021) Excretion of urine extracellular vesicles bearing markers of activated immune cells and calcium/phosphorus physiology differ between calcium kidney stone formers and non-stone formers. BMC Nephrol 22:204

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Z, Huang F, Xia W et al (2020) Osteogenic differentiation of renal interstitial fibroblasts promoted by lncRNA MALAT1 may partially contribute to Randall’s plaque formation. Front Cell Dev Biol 8:596363

Article  PubMed  Google Scholar 

Canela VH, Bowen WS, Ferreira RM et al (2023) A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury and matrix remodeling in patients with stone disease. Nat Commun 14:4140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evan AP, Coe FL, Lingeman J et al (2018) Randall’s plaque in stone formers originates in ascending thin limbs. Am J Physiol Ren Physiol 315:F1236–F1242

Article  CAS  Google Scholar 

Okada A, Hamamoto S, Taguchi K et al (2018) Kidney stone formers have more renal parenchymal crystals than non-stone formers, particularly in the papilla region. BMC Urol 18:19

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif