Acevedo S, de Esch I, Raber J (2007) Sex- and Histamine-Dependent Long-Term Cognitive Effects of Methamphetamine Exposure. Neuropsychopharmacol 32:665–672. https://doi.org/10.1038/sj.npp.1301091
Armenta-Resendiz M, Assali A, Tsvetkov E, Cowan CW (2022) Lavin A Repeated methamphetamine administration produces cognitive deficits through augmentation of GABAergic synaptic transmission in the prefrontal cortex. Neuropsychopharmacology 47(10):1816–1825. https://doi.org/10.1038/s41386-022-01371-9
Article CAS PubMed PubMed Central Google Scholar
Baicy K, London ED (2007) Corticolimbic dysregulation and chronic methamphetamine abuse. Addiction 102(Suppl 1):5–15. https://doi.org/10.1111/j.1360-0443.2006.01777.x
Barker GRI, Warburton EC (2011) Evaluating the neural basis of temporal order memory for visual stimuli in the rat. Eur J Neurosci 33(4):705–716. https://doi.org/10.1111/j.1460-9568.2010.07555.x
Barker GRI, Warburton EC (2020) Putting objects in context: A prefrontal-hippocampal-perirhinal cortex network. Brain Neurosci Adv 6(4):2398212820937621. https://doi.org/10.1177/2398212820937621
Barker GRI, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 14; 27(11):2948–57. https://doi.org/10.1523/JNEUROSCI.5289-06.2007
Barker GRI, Evuarherhe O, Warburton EC (2019) Remembering the order of serially presented objects: A matter of time? Brain Neurosci Adv 23(3):2398212819883088. https://doi.org/10.1177/2398212819883088
Belelli D, Casula A, Ling A, Lambert JJ (2002) The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology 43:651–661. https://doi.org/10.1016/S0028-3908(02)00172-7
Article CAS PubMed Google Scholar
Bernheim A, See RE, Reichel CM (2016) Chronic methamphetamine self-administration disrupts cortical control of cognition. Neurosci Biobehav Rev 69:36–48. https://doi.org/10.1016/j.neubiorev.2016.07.020
Article CAS PubMed PubMed Central Google Scholar
Bisagno V, González B, Francisco J (2016) Urbano Cognitive Enhancers versus Addictive Psychostimulants: the Good and Bad Side of Dopamine on Prefrontal Cortical Circuits. Pharmacol Res 109:108–118. https://doi.org/10.1016/j.phrs.2016.01.013
Article CAS PubMed Google Scholar
Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS, Funderburk FR, Ernst M (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19:1085–94. https://doi.org/10.1016/s1053-8119(03)00113-7
Bossé R, Rivest R, Di Paolo T (1997) Ovariectomy and estradiol treatment affect the dopamine transporter and its gene expression in the rat brain. Brain Res Mol Brain Res 46(1–2):343–346. https://doi.org/10.1016/s0169-328x(97)00082-x
Brecht ML, O’Brien A, von Mayrhauser C, Anglin MD (2004) Methamphetamine use behaviors and gender differences. Addict Behav 29(1):89–106. https://doi.org/10.1016/s0306-4603(03)00082-0
Chavez C, Hollaus M, Scarr E, Pavey G, Gogos A, van den Buuse M (2010) The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res 19:1321:51–9. https://doi.org/10.1016/j.brainres.2009.12.093
Culmsee C, Vedder H, Ravati A, Junker V, Otto D, Ahlemeyer B, Krieg JC (2011) Krieglstein J Neuroprotection by estrogens in a mouse model of focal cerebral ischemia and in cultured neurons: evidence for a receptor-independent antioxidative mechanism. J Cereb Blood Flow Metab 19(11):1263–1269. https://doi.org/10.1097/00004647-199911000-00011
D’Astous M, Gajjar TM, Dluzen DE, Di Paolo T (2004) Dopamine transporter as a marker of neuroprotection in methamphetamine-lesioned mice treated acutely with estradiol. Neuroendocrinology 79(6):296–304. https://doi.org/10.1159/000079664
Article CAS PubMed Google Scholar
Davis DL, Metzger DB, Vann PH et al (2022) Sex differences in neurobehavioral consequences of methamphetamine exposure in adult mice. Psychopharmacology 239:2331–2349. https://doi.org/10.1007/s00213-022-06122-8
Article CAS PubMed PubMed Central Google Scholar
Dean AC, Sevak RJ, Monterosso JR, Hellemann G, Sugar CA, London ED (2011) Acute modafinil effects on attention and inhibitory control in methamphetamine-dependent humans. J Stud Alcohol Drugs 72(6):943–53. https://doi.org/10.15288/jsad.2011.72.943
Article PubMed PubMed Central Google Scholar
Denning Christopher J E, Madory Lauren E, Herbert Jessica N, Cabrera Ryan A, Szumlinski Karen K (2024) Neuropharmacological Evidence Implicating Drug-Induced Glutamate Receptor Dysfunction in Affective and Cognitive Sequelae of Subchronic Methamphetamine Self-Administration in Mice. Int J Mol Sci 525(3):1928. https://doi.org/10.3390/ijms25031928
Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 31;215(2):244–54. https://doi.org/10.1016/j.bbr.2009.12.036
Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, Krystal JH, Murray JD, Anticevic A (2017) Searching for cross-diagnostic convergence: neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders. Biol Psychiatry 81:848–61. https://doi.org/10.1016/j.biopsych.2017.03.005
Friedman LK, Gibbs TT, Farb DH (1996) gamma-aminobutyric acidA receptor regulation: heterologous uncoupling of modulatory site interactions induced by chronic steroid, barbiturate, benzodiazepine, or GABA treatment in culture. Brain Res 22:707(1):100–9. https://doi.org/10.1016/0006-8993(95)01226-5
Gao X, Dluzen DE (2001) Tamoxifen abolishes estrogen’s neuroprotective effect upon methamphetamine neurotoxicity of the nigrostriatal dopaminergic system. BEuroscience 103(2):385–394. https://doi.org/10.1016/s0306-4522(01)00014-8
Ghazvini Hamed, Khaksari Mohammad, Esmaeilpour Khadijeh, Shabani Mohammad, Asadi-Shekaari Majid, Khodamoradi Mehdi, Sheibani Vahid (2016) Effects of treatment with estrogen and progesterone on the methamphetamine-induced cognitive impairment in ovariectomized rats. Neuroscience Letters 619:60–67. https://doi.org/10.1016/j.neulet.2016.02.057
Article CAS PubMed Google Scholar
Ghit A, Assal D, Al-Shami AS, Hussein DEE (2021) GABAA receptors: structure, function, pharmacology, and related disorder. J Genet Eng Biotechnol 2119(1):123. https://doi.org/10.1186/s43141-021-00224-0
Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 11:652–69. https://doi.org/10.1038/nrn3119
Goldstein RZ, Volkow ND, Chang L, Wang GJ, Fowler JS, Depue RA, Gur RC (2002) The orbitofrontal cortex in methamphetamine addiction: involvement in fear. Neuroreport 3; 13(17):2253–7. https://doi.org/10.1097/00001756-200212030-00017
Hankosky ER, Westbrook SR, Haake RM, Willing J, Raetzman LT, Juraska JM, Gulley JM (2018) Age- and sex-dependent effects of methamphetamine on cognitive flexibility and 5-HT2C receptor localization in the orbitofrontal cortex of Sprague-Dawley rats. Behav Brain Res 349:16–24. https://doi.org/10.1016/j.bbr.2018.04.047
Hartwell EE, Moallem NR, Courtney KE, Glasner-Edwards S, Ray LA (2016) Sex Differences in the Association Between Internalizing Symptoms and Craving in Methamphetamine Users. J Addict Med 10(6):395–401. https://doi.org/10.1097/ADM.0000000000000250
Article CAS PubMed PubMed Central Google Scholar
Hopkins JL, Goldsmith ST, Wood SK, Nelson KH, Carter JS, Freels DL, Lewandowski SI, Siemsen BM, Denton AR, Scofield MD, Reichel, (2023) CM Perirhinal to prefrontal circuit in methamphetamine induced recognition memory deficits. Neuropharmacology 2 1(240):109711. https://doi.org/10.1016/j.neuropharm.2023.109711
Kawabata Y, Imazu SI, Matsumoto K, Toyoda K, Kawano M, Kubo Y, Kinoshita S, Nishizawa Y, Kanazawa T (2022) rTMS Therapy Reduces Hypofrontality in Patients With Depression as Measured by fNIRS. Front Psychiatry 22(13):814611. https://doi.org/10.3389/fpsyt.2022.814611
Kim SJ, Lyoo IK, Hwang J, Sung YH, Lee HY, Lee DS, Jeong DU, Renshaw PF (2005) Frontal glucose hypometabolism in abstinent methamphetamine users. Neuropsychopharmacology 30(7):1383–91. https://doi.org/10.1038/sj.npp.1300699
Article CAS PubMed Google Scholar
Kim YT, Lee SW, Kwon DH, Seo JH, Ahn BC (2009) Lee J Dose-dependent frontal hypometabolism on FDG-PET in methamphetamine abusers. J Psychiatr Res 43(14):1166–1170. https://doi.org/10.1016/j.jpsychires.2009.03.011
King G, Alicata D, Cloak C, Chang L (2010) Neuropsychological deficits in adolescent methamphetamine abusers. Psychopharmacology (Berl) 212(2):243–9. https://doi.org/10.1007/s00213-010-1949-x
Comments (0)