Abdallah, H. M., El Sayed, N. S., Sirwi, A., Ibrahim, S. R. M., Mohamed, G. A., & Abdel Rasheed, N. O. (2021). Mangostanaxanthone IV ameliorates streptozotocin-induced neuro-inflammation, amyloid deposition, and tau hyperphosphorylation via modulating PI3K/Akt/GSK-3β pathway. Biology (basel), 10(12), 1298. https://doi.org/10.3390/biology10121298
Article CAS PubMed Google Scholar
Agrawal, M., Perumal, Y., Bansal, S., Arora, S., & Chopra, K. (2020). Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway. Food and Chemical Toxicology, 145, 111684. https://doi.org/10.1016/j.fct.2020.111684
Article CAS PubMed Google Scholar
Agrawal, R., Tyagi, E., Shukla, R., & Nath, C. (2010). Insulin receptor signaling in rat hippocampus: A study in STZ (ICV) induced memory deficit model. European Neuropsychopharmacology, 21(3), 261–273. https://doi.org/10.1016/j.euroneuro.2010.11.009
Article CAS PubMed Google Scholar
Akhtar, A., Dhaliwal, J., & Sah, S. P. (2021). 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology (berl), 238(7), 1991–2009. https://doi.org/10.1007/s00213-021-05826-7
Article CAS PubMed Google Scholar
Arnold, S. E., et al. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nature Reviews. Neurology, 14(3), 168–181. https://doi.org/10.1038/nrneurol.2017.185
Article CAS PubMed PubMed Central Google Scholar
August, I., Semendeferi, K., & Maria, C. M. (2022). Brain aging, Alzheimer’s disease, and the role of stem cells in primate comparative studies. The Journal of Comparative Neurology, 530(17), 2940–2953. https://doi.org/10.1002/cne.25394
Article CAS PubMed Google Scholar
Auroprajna, P., Naik, B. M., Sahoo, J. P., Keerthi, G. S., & Pal, M. P. G. K. (2018). Association of sympathovagal imbalance with cognitive impairment in type 2 diabetes in adults. Canadian Journal of Diabetes, 42(1), 44–50. https://doi.org/10.1016/j.jcjd.2017.01.008
Cao, S., Du, J., & Qiaohong, H. (2017). Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Experimental and Therapeutic Medicine, 14(5), 4919–4927. https://doi.org/10.3892/etm.2017.5127
Article CAS PubMed PubMed Central Google Scholar
Chen, S., Liu, A., An, F., Yao, W., & Gao, X. (2012). Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (dordrecht, Netherlands), 34(5), 1211–1224. https://doi.org/10.1007/s11357-011-9303-8
Article CAS PubMed Google Scholar
Cheng, J., Zhou, Z.-W., Sheng, H.-P., He, L.-J., Fan, X.-W., He, Z.-X., et al. (2015). An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Design, Development and Therapy, 9, 33–78. https://doi.org/10.2147/DDDT.S72892
Article CAS PubMed Google Scholar
Cuthbert, P. C., Stanford, L. E., Coba, M. P., Ainge, J. A., FinkOpazo, A. E. P., et al. (2007). Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 27(10), 2673–2682. https://doi.org/10.1523/JNEUROSCI.4457-06.2007
Article CAS PubMed Google Scholar
de la Monte, S. M., & Wands, J. R. (2008). Alzheimer’s disease is type 3 diabetes—evidence reviewed. Journal of Diabetes Science and Technology, 2(6), 1101–1113. https://doi.org/10.1177/193229680800200619
Article PubMed PubMed Central Google Scholar
Deng, Y., Li, B., Liu, Y., Iqbal, K., Grundke-Iqbal, I., & Gong, C. X. (2009). Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer’s disease. The Journal of Medical Research, 175(5), 2089–2098. https://doi.org/10.2353/ajpath.2009.090157
Dong, H., Mao, S., Mao, S., Wei, J., Liu, B., Zhang, Z., et al. (2012). Tanshinone IIA protects PC12 cells from β-amyloid(25–35)-induced apoptosis via PI3K/Akt signaling pathway. Molecular Biology Reports, 39(6), 6495–6503. https://doi.org/10.1007/s11033-012-1477-3
Article CAS PubMed Google Scholar
Dos Santos Picanco, L. C., Ozela, P. F., de Fatima de Brito, B. M., Pinheiro Abraao, A., Padilha Elias, C., Braga -Francinaldo, S., et al. (2018). Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Current Medicinal Chemistry, 25(26), 3141–3159. https://doi.org/10.2174/0929867323666161213101126
Article CAS PubMed Google Scholar
ElSaadani, M., Ahmed, S,M., Jacovides, C., et al. (2021) Post-traumatic brain injury antithrombin III recovers Morris water maze cognitive performance, improving cued and spatial learning. Journal of Trauma and Acute Care Surgery, 91(1):108–113. https://journals.lww.com/jtrauma/abstract/2021/07000/post_traumatic_brain_injury_antithrombin_iii.17.aspx
Fu, X. X., Wei, B., Cao, H. M., Duan, R., Deng, Y., Lian, H. W., et al. (2023). Telmisartan alleviates Alzheimer’s disease-related neuropathologies and cognitive impairments. Journal of Alzheimer’s Disease: JAD, 94(3), 919–933. https://doi.org/10.3233/JAD-230133
Article CAS PubMed Google Scholar
Giovinazzo, D., Bursac, B., Sbodio, J. I., Nalluru, S., Vignane, T., Snowman, A. M., et al. (2021). Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proceedings of the National Academy of Sciences, 118(4), e2017225118. https://doi.org/10.1073/pnas.2017225118
Gong, C. X., Lidsky, T., Wegiel, J., Zuck, L., Grundke-Iqbal, I., & Iqbal, K. (2000). Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. The Journal of Biological Chemistry, 275(8), 5535–5544. https://doi.org/10.1074/jbc.275.8.5535
Article CAS PubMed Google Scholar
Hou, Q.N. (2009) The Effect of Lycium Barbarum Polysaccharides on Insulin Resistance of Type 2 Diabetic Rats. Ningxia Medical University. https://kns.cnki.net/kcms2/article/abstract?v=A4c134OkBY-NB2hb6UlVgZLAI6flabLyB4vucflZQlAJXSBZH4VHhdJfoHgkaBP0b2uEpXdVrXxRSBjgRm_1NdvXKkkKWbdfalN5AwDmZl-Z6lWc9snfWgqjjFOaQzmZR8nWR5ieADKBC1rbJ7B96w==uniplatform=NZKPTlanguage=CHS
Hou, J., Wang, C., Zhang, M., Ren, M., Yang, G., Qu, Z., & Hu, Y. (2020). Safflower yellow improves the synaptic structural plasticity by ameliorating the disorder of glutamate circulation in Aβ 1–42 -induced AD model rats. Neurochemical Research, 45(8), 1870–1887. https://doi.org/10.1007/s11064-020-03051-w
Article CAS PubMed Google Scholar
Iasevoli, F., Tomasetti, C., & Bartolomeis, A. (2013). Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: Relevance for neuropsychiatric diseases. Neurochemical Research, 38(1), 1–22. https://doi.org/10.1007/s11064-012-0886-y
Article CAS PubMed Google Scholar
Isik, A. T., Celik, T., Ulusoy, G., Ongoru, O., Elibol, B., Doruk, H., et al. (2009). Curcumin ameliorates impaired insulin/IGF signalling and memory deficit in a streptozotocin-treated rat model. Age, 31(1), 39–49. https://doi.org/10.1007/s11357-008-9078-8
Article CAS PubMed Google Scholar
Jiang, S. J., Xiao, X., Li, J., & Mu, Y. (2023). Lycium barbarum polysaccharide-glycoprotein ameliorates ionizing radiation-induced epithelial injury by regulating oxidative stress and ferroptosis via the Nrf2 pathway. Free Radical Biology Medicine, 204, 84–94. https://doi.org/10.1016/j.freeradbiomed.2023.04.020
Article CAS PubMed Google Scholar
Jucker, M., & Walker, L. C. (2023). Alzheimer’s disease: From immunotherapy to immunoprevention. Cell, 186(20), 4260–4270. https://doi.org/10.1016/j.cell.2023.08.021
Article CAS PubMed Google Scholar
Kazkayasi, I., Telli, G., Nemutlu, E., & Uma, S. (2022). Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of Alzheimer’s disease. Life Sciences, 299, 120538. https://doi.org/10.1016/j.lfs.2022.120538
Article CAS PubMed Google Scholar
Kleinridders, A., Ferris, H. A., Cai, W., & Kahn, C. R. (2014). Insulin action in brain regulates systemic metabolism and brain function. Diabetes, 63(7), 2232–2243. https://doi.org/10.2337/db14-0568
Article PubMed PubMed Central Google Scholar
Knezovic, A., Budisa, S., Babic, P. A., Homolak, J., & Osmanovic Barilar, J. (2023). From determining brain insulin resistance in a sporadic Alzheimer’s disease model to
Comments (0)