Lycium Barbarum Polysaccharides Improves Cognitive Functions in ICV-STZ-Induced Alzheimer’s Disease Mice Model by Improving the Synaptic Structural Plasticity and Regulating IRS1/PI3K/AKT Signaling Pathway

Abdallah, H. M., El Sayed, N. S., Sirwi, A., Ibrahim, S. R. M., Mohamed, G. A., & Abdel Rasheed, N. O. (2021). Mangostanaxanthone IV ameliorates streptozotocin-induced neuro-inflammation, amyloid deposition, and tau hyperphosphorylation via modulating PI3K/Akt/GSK-3β pathway. Biology (basel), 10(12), 1298. https://doi.org/10.3390/biology10121298

Article  CAS  PubMed  Google Scholar 

Agrawal, M., Perumal, Y., Bansal, S., Arora, S., & Chopra, K. (2020). Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway. Food and Chemical Toxicology, 145, 111684. https://doi.org/10.1016/j.fct.2020.111684

Article  CAS  PubMed  Google Scholar 

Agrawal, R., Tyagi, E., Shukla, R., & Nath, C. (2010). Insulin receptor signaling in rat hippocampus: A study in STZ (ICV) induced memory deficit model. European Neuropsychopharmacology, 21(3), 261–273. https://doi.org/10.1016/j.euroneuro.2010.11.009

Article  CAS  PubMed  Google Scholar 

Akhtar, A., Dhaliwal, J., & Sah, S. P. (2021). 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology (berl), 238(7), 1991–2009. https://doi.org/10.1007/s00213-021-05826-7

Article  CAS  PubMed  Google Scholar 

Arnold, S. E., et al. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nature Reviews. Neurology, 14(3), 168–181. https://doi.org/10.1038/nrneurol.2017.185

Article  CAS  PubMed  PubMed Central  Google Scholar 

August, I., Semendeferi, K., & Maria, C. M. (2022). Brain aging, Alzheimer’s disease, and the role of stem cells in primate comparative studies. The Journal of Comparative Neurology, 530(17), 2940–2953. https://doi.org/10.1002/cne.25394

Article  CAS  PubMed  Google Scholar 

Auroprajna, P., Naik, B. M., Sahoo, J. P., Keerthi, G. S., & Pal, M. P. G. K. (2018). Association of sympathovagal imbalance with cognitive impairment in type 2 diabetes in adults. Canadian Journal of Diabetes, 42(1), 44–50. https://doi.org/10.1016/j.jcjd.2017.01.008

Article  PubMed  Google Scholar 

Cao, S., Du, J., & Qiaohong, H. (2017). Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Experimental and Therapeutic Medicine, 14(5), 4919–4927. https://doi.org/10.3892/etm.2017.5127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, S., Liu, A., An, F., Yao, W., & Gao, X. (2012). Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (dordrecht, Netherlands), 34(5), 1211–1224. https://doi.org/10.1007/s11357-011-9303-8

Article  CAS  PubMed  Google Scholar 

Cheng, J., Zhou, Z.-W., Sheng, H.-P., He, L.-J., Fan, X.-W., He, Z.-X., et al. (2015). An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Design, Development and Therapy, 9, 33–78. https://doi.org/10.2147/DDDT.S72892

Article  CAS  PubMed  Google Scholar 

Cuthbert, P. C., Stanford, L. E., Coba, M. P., Ainge, J. A., FinkOpazo, A. E. P., et al. (2007). Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 27(10), 2673–2682. https://doi.org/10.1523/JNEUROSCI.4457-06.2007

Article  CAS  PubMed  Google Scholar 

de la Monte, S. M., & Wands, J. R. (2008). Alzheimer’s disease is type 3 diabetes—evidence reviewed. Journal of Diabetes Science and Technology, 2(6), 1101–1113. https://doi.org/10.1177/193229680800200619

Article  PubMed  PubMed Central  Google Scholar 

Deng, Y., Li, B., Liu, Y., Iqbal, K., Grundke-Iqbal, I., & Gong, C. X. (2009). Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer’s disease. The Journal of Medical Research, 175(5), 2089–2098. https://doi.org/10.2353/ajpath.2009.090157

Article  CAS  Google Scholar 

Dong, H., Mao, S., Mao, S., Wei, J., Liu, B., Zhang, Z., et al. (2012). Tanshinone IIA protects PC12 cells from β-amyloid(25–35)-induced apoptosis via PI3K/Akt signaling pathway. Molecular Biology Reports, 39(6), 6495–6503. https://doi.org/10.1007/s11033-012-1477-3

Article  CAS  PubMed  Google Scholar 

Dos Santos Picanco, L. C., Ozela, P. F., de Fatima de Brito, B. M., Pinheiro Abraao, A., Padilha Elias, C., Braga -Francinaldo, S., et al. (2018). Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Current Medicinal Chemistry, 25(26), 3141–3159. https://doi.org/10.2174/0929867323666161213101126

Article  CAS  PubMed  Google Scholar 

ElSaadani, M., Ahmed, S,M., Jacovides, C., et al. (2021) Post-traumatic brain injury antithrombin III recovers Morris water maze cognitive performance, improving cued and spatial learning. Journal of Trauma and Acute Care Surgery, 91(1):108–113. https://journals.lww.com/jtrauma/abstract/2021/07000/post_traumatic_brain_injury_antithrombin_iii.17.aspx

Fu, X. X., Wei, B., Cao, H. M., Duan, R., Deng, Y., Lian, H. W., et al. (2023). Telmisartan alleviates Alzheimer’s disease-related neuropathologies and cognitive impairments. Journal of Alzheimer’s Disease: JAD, 94(3), 919–933. https://doi.org/10.3233/JAD-230133

Article  CAS  PubMed  Google Scholar 

Giovinazzo, D., Bursac, B., Sbodio, J. I., Nalluru, S., Vignane, T., Snowman, A. M., et al. (2021). Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proceedings of the National Academy of Sciences, 118(4), e2017225118. https://doi.org/10.1073/pnas.2017225118

Article  CAS  Google Scholar 

Gong, C. X., Lidsky, T., Wegiel, J., Zuck, L., Grundke-Iqbal, I., & Iqbal, K. (2000). Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. The Journal of Biological Chemistry, 275(8), 5535–5544. https://doi.org/10.1074/jbc.275.8.5535

Article  CAS  PubMed  Google Scholar 

Hou, Q.N. (2009) The Effect of Lycium Barbarum Polysaccharides on Insulin Resistance of Type 2 Diabetic Rats. Ningxia Medical University. https://kns.cnki.net/kcms2/article/abstract?v=A4c134OkBY-NB2hb6UlVgZLAI6flabLyB4vucflZQlAJXSBZH4VHhdJfoHgkaBP0b2uEpXdVrXxRSBjgRm_1NdvXKkkKWbdfalN5AwDmZl-Z6lWc9snfWgqjjFOaQzmZR8nWR5ieADKBC1rbJ7B96w==uniplatform=NZKPTlanguage=CHS

Hou, J., Wang, C., Zhang, M., Ren, M., Yang, G., Qu, Z., & Hu, Y. (2020). Safflower yellow improves the synaptic structural plasticity by ameliorating the disorder of glutamate circulation in Aβ 1–42 -induced AD model rats. Neurochemical Research, 45(8), 1870–1887. https://doi.org/10.1007/s11064-020-03051-w

Article  CAS  PubMed  Google Scholar 

Iasevoli, F., Tomasetti, C., & Bartolomeis, A. (2013). Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: Relevance for neuropsychiatric diseases. Neurochemical Research, 38(1), 1–22. https://doi.org/10.1007/s11064-012-0886-y

Article  CAS  PubMed  Google Scholar 

Isik, A. T., Celik, T., Ulusoy, G., Ongoru, O., Elibol, B., Doruk, H., et al. (2009). Curcumin ameliorates impaired insulin/IGF signalling and memory deficit in a streptozotocin-treated rat model. Age, 31(1), 39–49. https://doi.org/10.1007/s11357-008-9078-8

Article  CAS  PubMed  Google Scholar 

Jiang, S. J., Xiao, X., Li, J., & Mu, Y. (2023). Lycium barbarum polysaccharide-glycoprotein ameliorates ionizing radiation-induced epithelial injury by regulating oxidative stress and ferroptosis via the Nrf2 pathway. Free Radical Biology Medicine, 204, 84–94. https://doi.org/10.1016/j.freeradbiomed.2023.04.020

Article  CAS  PubMed  Google Scholar 

Jucker, M., & Walker, L. C. (2023). Alzheimer’s disease: From immunotherapy to immunoprevention. Cell, 186(20), 4260–4270. https://doi.org/10.1016/j.cell.2023.08.021

Article  CAS  PubMed  Google Scholar 

Kazkayasi, I., Telli, G., Nemutlu, E., & Uma, S. (2022). Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of Alzheimer’s disease. Life Sciences, 299, 120538. https://doi.org/10.1016/j.lfs.2022.120538

Article  CAS  PubMed  Google Scholar 

Kleinridders, A., Ferris, H. A., Cai, W., & Kahn, C. R. (2014). Insulin action in brain regulates systemic metabolism and brain function. Diabetes, 63(7), 2232–2243. https://doi.org/10.2337/db14-0568

Article  PubMed  PubMed Central  Google Scholar 

Knezovic, A., Budisa, S., Babic, P. A., Homolak, J., & Osmanovic Barilar, J. (2023). From determining brain insulin resistance in a sporadic Alzheimer’s disease model to

Comments (0)

No login
gif