Boucher, T. J., Okuse, K., Bennett, D. L., Munson, J. B., Wood, J. N., & McMahon, S. B. (2000). Potent analgesic effects of GDNF in neuropathic pain states. Science, 290(5489), 124–127. https://doi.org/10.1126/science.290.5489.124
Article CAS PubMed Google Scholar
Chen, G., Park, C. K., Xie, R. G., & Ji, R. R. (2015). Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-beta secretion. Journal of Clinical Investigation, 125(8), 3226–3240. https://doi.org/10.1172/JCI80883
Article PubMed PubMed Central Google Scholar
Chessell, I. P., Hatcher, J. P., Bountra, C., Michel, A. D., Hughes, J. P., Green, P., Egerton, J., Murfin, M., Richardson, J., Peck, W. L., Grahames, C. B. A., Casula, M. A., Yiangou, Y., Birch, R., Anand, P., & Buell, G. N. (2005). Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 114(3), 386–396. https://doi.org/10.1016/j.pain.2005.01.002
Article CAS PubMed Google Scholar
Daniele, S. G., Beraud, D., Davenport, C., Cheng, K., Yin, H., & Maguire-Zeiss, K. A. (2015). Activation of MyD88-dependent TLR1/2 signaling by misfolded alpha-synuclein, a protein linked to neurodegenerative disorders. Science Signalling, 8(376), ra45. https://doi.org/10.1126/scisignal.2005965
Duarte Azevedo, M., Sander, S., & Tenenbaum, L. (2020). GDNF, a neuron-derived factor upregulated in glial cells during disease. Journal of Clinical Medicine. https://doi.org/10.3390/jcm9020456
Article PubMed PubMed Central Google Scholar
Finnerup, N. B., Kuner, R., & Jensen, T. S. (2021). Neuropathic pain: From mechanisms to treatment. Physiological Reviews, 101(1), 259–301. https://doi.org/10.1152/physrev.00045.2019
Article CAS PubMed Google Scholar
Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q., & Song, A. G. (2019). Mesenchymal stem cell migration and tissue repair. Cells. https://doi.org/10.3390/cells8080784
Article PubMed PubMed Central Google Scholar
Grondin, R., & Gash, D. M. (1998). Glial cell line-derived neurotrophic factor (GDNF): A drug candidate for the treatment of Parkinson’s disease. Journal of Neurology, 245(11 Suppl 3), P35-42. https://doi.org/10.1007/pl00007744
Article CAS PubMed Google Scholar
Horak, J., Nalos, L., Martinkova, V., Tegl, V., Vistejnova, L., Kuncova, J., Kohoutova, M., Jarkovska, D., Dolejsova, M., Benes, J., Steng, M., & Matejovic, M. (2020). Evaluation of mesenchymal stem cell therapy for sepsis: A randomized controlled porcine study. Frontiers in Immunology, 11, 126. https://doi.org/10.3389/fimmu.2020.00126
Article CAS PubMed PubMed Central Google Scholar
Hwang, K., Jung, K., Kim, I. S., Kim, M., Han, J., Lim, J., Shin, J. E., Jang, J.-H., & Park, K. I. (2019). Glial cell line-derived neurotrophic factor-overexpressing human neural stem/progenitor cells enhance therapeutic efficiency in rat with traumatic spinal cord injury. Experimental Neurobiology, 28(6), 679–696. https://doi.org/10.5607/en.2019.28.6.679
Article PubMed PubMed Central Google Scholar
Ibanez, C. F., & Andressoo, J. O. (2017). Biology of GDNF and its receptors—relevance for disorders of the central nervous system. Neurobiology of Disease, 97(Pt B), 80–89. https://doi.org/10.1016/j.nbd.2016.01.021
Article CAS PubMed Google Scholar
Jha, M. K., Jeon, S., & Suk, K. (2012). Glia as a link between neuroinflammation and neuropathic pain. Immune Network, 12(2), 41–47. https://doi.org/10.4110/in.2012.12.2.41
Article PubMed PubMed Central Google Scholar
Ji, R. R., Nackley, A., Huh, Y., Terrando, N., & Maixner, W. (2018). Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 129(2), 343–366. https://doi.org/10.1097/ALN.0000000000002130
Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology, 11(5), 373–384. https://doi.org/10.1038/ni.1863
Article CAS PubMed Google Scholar
Kim, C. F., & Moalem-Taylor, G. (2011). Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. Journal of Pain, 12(3), 370–383. https://doi.org/10.1016/j.jpain.2010.08.003
Article CAS PubMed Google Scholar
Kimura, M., Sakai, A., Sakamoto, A., & Suzuki, H. (2015). Glial cell line-derived neurotrophic factor-mediated enhancement of noradrenergic descending inhibition in the locus coeruleus exerts prolonged analgesia in neuropathic pain. British Journal of Pharmacology, 172(10), 2469–2478. https://doi.org/10.1111/bph.13073
Article CAS PubMed PubMed Central Google Scholar
Ledeboer, A., Jekich, B. M., Sloane, E. M., Mahoney, J. H., Langer, S. J., Milligan, E. D., Martin, D., Maier, S. F., Johnson, K. W., Leinwand, L. A., Chavez, R. A., & Watkins, L. R. (2007). Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain, Behavior, and Immunity, 21(5), 686–698. https://doi.org/10.1016/j.bbi.2006.10.012
Article CAS PubMed Google Scholar
Lee, J., Hyeon, S. J., Im, H., Ryu, H., Kim, Y., & Ryu, H. (2016). Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS. Experimental Neurobiology, 25(5), 233–240. https://doi.org/10.5607/en.2016.25.5.233
Article PubMed PubMed Central Google Scholar
Li, D., Pan, X., Zhao, J., Chi, C., Wu, G., Wang, Y., Laio, Y., Wang, C., Ma, J., & Pan, J. (2016). Bone marrow mesenchymal stem cells suppress acute lung injury induced by lipopolysaccharide through inhibiting the TLR2, 4/NF-kappaB pathway in rats with multiple trauma. Shock, 45(6), 641–646. https://doi.org/10.1097/SHK.0000000000000548
Article CAS PubMed Google Scholar
Liu, F., Wang, Z., Qiu, Y., Wei, M., Li, C., Xie, Y., Shen, L., Huang, Y., & Ma, C. (2017). Suppression of MyD88-dependent signaling alleviates neuropathic pain induced by peripheral nerve injury in the rat. Journal of Neuroinflammation, 14(1), 70. https://doi.org/10.1186/s12974-017-0822-9
Article CAS PubMed PubMed Central Google Scholar
Liu, W., Rong, Y., Wang, J., Zhou, Z., Ge, X., Ji, C., Jiang, D., Gong, F., Li, L., Chen, J., Zhao, S., Kong, F., Gu, C., Fan, J., & Cai, W. (2020). Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. Journal of Neuroinflammation, 17(1), 47. https://doi.org/10.1186/s12974-020-1726-7
Article CAS PubMed PubMed Central Google Scholar
Liu, X., Wei, Q., Lu, L., Cui, S., Ma, K., Zhang, W., Ma, F., Li, H., Fu, X., & Zhang, C. (2023). Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells. Frontiers in Immunology, 14, 1094685. https://doi.org/10.3389/fimmu.2023.1094685
Article CAS PubMed PubMed Central Google Scholar
Ma, Z. J., Yang, J. J., Lu, Y. B., Liu, Z. Y., & Wang, X. X. (2020). Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World Journal of Stem Cells, 12(8), 814–840. https://doi.org/10.4252/wjsc.v12.i8.814
Article PubMed PubMed Central Google Scholar
Mansour, R. M., Ahmed, M. A. E., El-Sahar, A. E., & El Sayed, N. S. (2018). Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects. Toxicology and Applied Pharmacology, 358, 76–85. https://doi.org/10.1016/j.taap.2018.09.012
Article CAS PubMed Google Scholar
Mika, J., Zychowska, M., Popiolek-Barczyk, K., Rojewska, E., & Przewlocka, B. (2013). Importance of glial activation in neuropathic pain. European Journal of Pharmacology, 716(1–3), 106–119. https://doi.org/10.1016/j.ejphar.2013.01.072
Article CAS PubMed Google Scholar
Mitsikostas, D. D., Moka, E., Orrillo, E., Aurilio, C., Vadalouca, A., Paladini, A., & Varrassi, G. (2022). Neuropathic pain in neurologic disorders: A narrative review. Cureus, 14(2), e22419. https://doi.org/10.7759/cureus.22419
Comments (0)