Brendza, R., Gao, X., Stark, K. L., Lin, H., Lee, S. H., Hu, C., et al. (2023). Anti-α-synuclein c-terminal antibodies block PFF uptake and accumulation of phospho-synuclein in preclinical models of Parkinson’s disease. Neurobiology of Diseases, 177, 105969. https://doi.org/10.1016/j.nbd.2022.105969
Cappai, R., Leck, S. L., Tew, D. J., Williamson, N. A., Smith, D. P., Galatis, D., et al. (2005). Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. The FASEB Journal, 19(10), 1377–1379. https://doi.org/10.1096/fj.04-3437fje
Article CAS PubMed Google Scholar
Caropreso, V., Darvishi, E., Turbyville, T. J., Ratnayake, R., Grohar, P. J., McMahon, J. B., et al. (2016). Englerin A Inhibits EWS-FLI1 DNA Binding in Ewing Sarcoma Cells. Journal of Biological Chemistry, 291(19), 10058–10066. https://doi.org/10.1074/jbc.M115.701375
Article CAS PubMed PubMed Central Google Scholar
Chinnapaka, S., Zheng, G., Chen, A., & Munirathinam, G. (2019). Nitro aspirin (NCX4040) induces apoptosis in PC3 metastatic prostate cancer cells via hydrogen peroxide (H(2)O(2))-mediated oxidative stress. Free Radical Biology & Medicine, 143, 494–509. https://doi.org/10.1016/j.freeradbiomed.2019.08.025
Chinta, S. J., Mallajosyula, J. K., Rane, A., & Andersen, J. K. (2010). Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters, 486(3), 235–239. https://doi.org/10.1016/j.neulet.2010.09.061
Article CAS PubMed PubMed Central Google Scholar
Chung, S., Yang, J., Kim, H. J., Hwang, E. M., Lee, W., Suh, K., et al. (2021). Plexin-A4 mediates amyloid-beta-induced tau pathology in Alzheimer’s disease animal model. Progress in Neurobiology, 203, 102075. https://doi.org/10.1016/j.pneurobio.2021.102075
Article CAS PubMed Google Scholar
Das, N. R., Vaidya, B., Khare, P., Bishnoi, M., & Sharma, S. S. (2021). Combination of Peroxisome Proliferator-activated Receptor Gamma (PPARgamma) Agonist and PPAR Gamma Co-Activator 1alpha (PGC-1alpha) Activator Ameliorates Cognitive Deficits, Oxidative Stress, and Inflammation in Rodent Model of Parkinson’s Disease. Current Neurovascular Research, 18(5), 497–507. https://doi.org/10.2174/1567202619666211217140954
Article CAS PubMed Google Scholar
De March, Z., Giampa, C., Patassini, S., Bernardi, G., & Fusco, F. R. (2006). Cellular localization of TRPC5 in the substantia nigra of rat. Neuroscience Letters, 402(1–2), 35–39. https://doi.org/10.1016/j.neulet.2006.03.061
Article CAS PubMed Google Scholar
Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G., & Anandatheerthavarada, H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry, 283(14), 9089–9100. https://doi.org/10.1074/jbc.M710012200
Article CAS PubMed PubMed Central Google Scholar
Dryanovski, D. I., Guzman, J. N., Xie, Z., Galteri, D. J., Volpicelli-Daley, L. A., Lee, V. M., et al. (2013). Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. Journal of Neuroscience, 33(24), 10154–10164. https://doi.org/10.1523/JNEUROSCI.5311-12.2013
Article CAS PubMed Google Scholar
Elzamzamy, O. M., Johnson, B. E., Chen, W. C., Hu, G., Penner, R., & Hazlehurst, L. A. (2021). Transient Receptor Potential C 1/4/5 is a determinant of MTI-101 induced calcium influx and cell death in multiple myeloma. Cells. https://doi.org/10.3390/cells10061490
Article PubMed PubMed Central Google Scholar
Gao, J., Perera, G., Bhadbhade, M., Halliday, G. M., & Dzamko, N. (2019). Autophagy activation promotes clearance of alpha-synuclein inclusions in fibril-seeded human neural cells. Journal of Biological Chemistry, 294(39), 14241–14256. https://doi.org/10.1074/jbc.RA119.008733
Article CAS PubMed PubMed Central Google Scholar
Giraldez-Perez, R., Antolin-Vallespin, M., Munoz, M., & Sanchez-Capelo, A. (2014). Models of alpha-synuclein aggregation in Parkinson’s disease. Acta Neuropathologica Communications, 2, 176. https://doi.org/10.1186/s40478-014-0176-9
Article PubMed PubMed Central Google Scholar
Gomez-Benito, M., Granado, N., Garcia-Sanz, P., Michel, A., Dumoulin, M., & Moratalla, R. (2020). Modeling Parkinson’s disease With the alpha-synuclein protein. Frontiers in Pharmacology, 11, 356. https://doi.org/10.3389/fphar.2020.00356
Article CAS PubMed PubMed Central Google Scholar
Gueguinou, M., Ibrahim, S., Bourgeais, J., Robert, A., Pathak, T., Zhang, X., et al. (2022). Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer. Cellular and Molecular Life Sciences, 79(6), 284. https://doi.org/10.1007/s00018-022-04311-4
Article CAS PubMed Google Scholar
Hong, C., Seo, H., Kwak, M., Jeon, J., Jang, J., Jeong, E. M., et al. (2015). Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington’s disease. Brain, 138(Pt 10), 3030–3047. https://doi.org/10.1093/brain/awv188
Article PubMed PubMed Central Google Scholar
Howe, J. W., Sortwell, C. E., Duffy, M. F., Kemp, C. J., Russell, C. P., Kubik, M., et al. (2021). Preformed fibrils generated from mouse alpha-synuclein produce more inclusion pathology in rats than fibrils generated from rat alpha-synuclein. Parkinsonism & Related Disorders, 89, 41–47. https://doi.org/10.1016/j.parkreldis.2021.06.010
Kaczmarek, J. S., Riccio, A., & Clapham, D. E. (2012). Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proceedings of the National Academy of Sciences, 109(20), 7888–7892. https://doi.org/10.1073/pnas.1205869109
Kardani, J., Sethi, R., & Roy, I. (2017). Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson’s disease. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1863(6), 1454–1463. https://doi.org/10.1016/j.bbadis.2017.02.002
Article CAS PubMed Google Scholar
Khandelwal, P. J., & Moussa, C. E. (2010). The relationship between parkin and protein aggregation in neurodegenerative diseases. Front Psychiatry, 1, 15. https://doi.org/10.3389/fpsyt.2010.00015
Article CAS PubMed PubMed Central Google Scholar
Legier, T., Rattier, D., Llewellyn, J., Vannier, T., Sorre, B., Maina, F., et al. (2023). Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-beta protein sensing. Nature Communications, 14(1), 349. https://doi.org/10.1038/s41467-023-35965-8
Article CAS PubMed PubMed Central Google Scholar
Li, W., & Ehrich, M. (2022). Effects of chlorpyrifos on transient receptor potential channels. Toxicology Letters, 358, 100–104. https://doi.org/10.1016/j.toxlet.2022.01.016
Article CAS PubMed Google Scholar
Li, Z. C., Zhao, Y. S., Lin, J. J., Wang, L. L., Song, H. X., Gan, C. L., et al. (2023). Sodium para-aminosalicylic acid ameliorates brain neuroinflammation and behavioral deficits in juvenile lead-exposed rats by modulating MAPK signaling pathway and alpha-synuclein. Toxicology Letters, 375, 48–58. https://doi.org/10.1016/j.toxlet.2022.12.013
Article CAS PubMed Google Scholar
Luk, K. C., Song, C., O’Brien, P., Stieber, A., Branch, J. R., Brunden, K. R., et al. (2009). Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proceedings of the National Academy of Sciences, 106(47), 20051–20056. https://doi.org/10.1073/pnas.0908005106
Magalhaes, P., & Lashuel, H. A. (2022). Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson’s disease and other synucleinopathies. NPJ Parkinsons Disease, 8(1), 93. https://doi.org/10.1038/s41531-022-00357-0
Martinez, J., Moeller, I., Erdjument-Bromage, H., Tempst, P., & Lauring, B. (2003). Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate. Journal of Biological Chemistry, 278(19), 17379–17387. https://doi.org/10.1074/jbc.M209020200
Comments (0)