p39 Affects Myelin Formation in Cerebral Ischemic Injury

Asada, A., Yamamoto, N., Gohda, M., Saito, T., Hayashi, N., et al. (2008). Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cycline-dependent kinase 5 complexes. Journal of Neurochemistry, 106, 1325–1336.

Article  CAS  PubMed  Google Scholar 

Cai, X. H., Tang, D. M., & Xu, R. X. (2001). Neuronal cdc-2 like kinase in developing kindling rat hippocampus. Chinese Medical Journal, 114, 248–252.

CAS  PubMed  Google Scholar 

Cai, X. H., Tomizawa, K., Tang, D., Lu, Y. F., Moriwaki, A., et al. (1997). Changes in the expression of novel Cdk5 activator messenger RNA (p39nck5ai mRNA) during rat brain development. Neuroscience Research, 28, 355–360.

Article  CAS  PubMed  Google Scholar 

Chang, Y., Ostling, P., Akerfelt, M., Trouillet, D., Rallu, M., et al. (2006). Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes & Development, 20, 836–847.

Article  CAS  Google Scholar 

Cheung, Z. H., Fu, A. K. Y., & Ip, N. Y. (2006). Synaptic roles of Cdk 5: Implications in higher cognitive functions and neurodegenerative diseases. Neuron, 50, 13–18.

Article  CAS  PubMed  Google Scholar 

Fields, R. D. (2010). Change in the brain’s white matter. Science, 330, 768–769.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill, R. A., Li, A. M., & Grutzendler, J. (2018). Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nature Neuroscience, 21, 683–695.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Honjyo, Y., Kawamoto, Y., Nakamura, S., Nakano, S., & Akiguchi, I. (1999). Immunohistochemical localization of CDK5 activator p39 in the rat brain. NeuroReport, 10, 3375–3379.

Article  CAS  PubMed  Google Scholar 

Hulkower, M. B., Poliak, D. B., Rosenbaum, S. B., Zimmerman, M. E., & Lipton, M. L. (2013). A decade of DTI in traumatic brain injury: 10 years and 100 articles later. American Journal of Neuroradiology, 34, 2064–2074.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Humbert, S., Dhavan, R., & Tsai, L. (2000). p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. Journal of Cell Science, 113(Pt 6), 975–983.

Article  CAS  PubMed  Google Scholar 

Jeong, Y. G., Rosales, J. L., Marzban, H., Sillitoe, R. V., Park, D. G., et al. (2003). The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum. Neuroscience, 118, 323–334.

Article  CAS  PubMed  Google Scholar 

Jessberger, S., Gage, F. H., Eisch, A. J., & Lagace, D. C. (2009). Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends in Neurosciences, 32, 575–582.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalathur, R. K., Hernandez-Prieto, M. A., & Futschik, M. E. (2012). Huntington’s disease and its therapeutic target genes: A global functional profile based on the HD Research Crossroads database. BMC Neurology, 12, 47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, H. J., Tsao, J. W., & Stanfill, A. G. (2018). The current state of biomarkers of mild traumatic brain injury. Jci Insight. https://doi.org/10.1172/jci.insight.97105

Article  PubMed  PubMed Central  Google Scholar 

Kimura, T., Ishiguro, K., & Hisanaga, S. (2014). Physiological and pathological phosphorylation of tau by Cdk5. Frontiers in Molecular Neuroscience, 7, 65.

Article  PubMed  PubMed Central  Google Scholar 

Ko, J., Humbert, S., Bronson, R. T., Takahashi, S., Kulkarni, A. B., et al. (2001). p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. Journal of Neuroscience, 21, 6758–6771.

Article  CAS  PubMed  Google Scholar 

Lai, K. O., & Ip, N. Y. (2009). Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1792, 741–745.

Article  CAS  Google Scholar 

Ledee, D. R., Gao, C. Y., Seth, R., Fariss, R. N., Tripathi, B. K., et al. (2005). A specific interaction between muskelin and the cyclin-dependent kinase 5 activator p39 promotes peripheral localization of muskelin. Journal of Biological Chemistry, 280, 21376–21383.

Article  CAS  PubMed  Google Scholar 

Li, S. S., Hua, X. Y., Zheng, M. X., Wu, J. J., Ma, Z. Z., et al. (2021). PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Experimental Neurology, 346, 113854.

Article  CAS  PubMed  Google Scholar 

Lilja, L., Johansson, J. U., Gromada, J., Mandic, S. A., Fried, G., et al. (2004). Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. Journal of Biological Chemistry, 279, 29534–29541.

Article  CAS  PubMed  Google Scholar 

Liu, F., Schafer, D. P., & McCullough, L. D. (2009). TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. Journal of Neuroscience Methods, 179, 1–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, F. C., Burke, K., Kantor, C., Miller, R. H., & Yang, Y. (2014). Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling. Journal of Neuroscience, 34, 10415–10429.

Article  CAS  PubMed  Google Scholar 

Pantoni, L., Garcia, J. H., & Gutierrez, J. A. (1996). Cerebral white matter is highly vulnerable to ischemia. Stroke, 27, 1641–1646.

Article  CAS  PubMed  Google Scholar 

Qu, D., Rashidian, J., Mount, M. P., Aleyasin, H., Parsanejad, M., et al. (2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron, 55, 37–52.

Article  CAS  PubMed  Google Scholar 

Shelton, S. B., & Johnson, G. V. W. (2004). Cyclin-dependent kinase-5 in neurodegeneration. Journal of Neurochemistry, 88, 1313–1326.

Article  CAS  PubMed  Google Scholar 

Tan, X., Chen, Y., Li, J., Li, X., Miao, Z., et al. (2015). The inhibition of Cdk5 activity after hypoxia/ischemia injury reduces infarct size and promotes functional recovery in neonatal rats. Neuroscience, 290, 552–560.

Article  CAS  PubMed  Google Scholar 

Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., et al. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. Journal of Biological Chemistry, 270, 26897–26903.

Article  CAS  PubMed  Google Scholar 

Tian, F., Xu, L. H., Wang, B., Tian, L. J., & Ji, X. L. (2015). The neuroprotective mechanism of puerarin in the treatment of acute spinal ischemia-reperfusion injury is linked to cyclin-dependent kinase 5. Neuroscience Letters, 584, 50–55.

Article  CAS  PubMed  Google Scholar 

Wang, C., Pei, A. J., Chen, J., Yu, H. L., Sun, M. L., et al. (2012). A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. Journal of Neurochemistry, 121, 1007–1013.

Article  CAS  PubMed  Google Scholar 

Wang, J., Liu, S. H., Fu, Y. P., Wang, J. H., & Lu, Y. M. (2003). Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nature Neuroscience, 6, 1039–1047.

Article  CAS 

Comments (0)

No login
gif