Asada, A., Yamamoto, N., Gohda, M., Saito, T., Hayashi, N., et al. (2008). Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cycline-dependent kinase 5 complexes. Journal of Neurochemistry, 106, 1325–1336.
Article CAS PubMed Google Scholar
Cai, X. H., Tang, D. M., & Xu, R. X. (2001). Neuronal cdc-2 like kinase in developing kindling rat hippocampus. Chinese Medical Journal, 114, 248–252.
Cai, X. H., Tomizawa, K., Tang, D., Lu, Y. F., Moriwaki, A., et al. (1997). Changes in the expression of novel Cdk5 activator messenger RNA (p39nck5ai mRNA) during rat brain development. Neuroscience Research, 28, 355–360.
Article CAS PubMed Google Scholar
Chang, Y., Ostling, P., Akerfelt, M., Trouillet, D., Rallu, M., et al. (2006). Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes & Development, 20, 836–847.
Cheung, Z. H., Fu, A. K. Y., & Ip, N. Y. (2006). Synaptic roles of Cdk 5: Implications in higher cognitive functions and neurodegenerative diseases. Neuron, 50, 13–18.
Article CAS PubMed Google Scholar
Fields, R. D. (2010). Change in the brain’s white matter. Science, 330, 768–769.
Article CAS PubMed PubMed Central Google Scholar
Hill, R. A., Li, A. M., & Grutzendler, J. (2018). Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nature Neuroscience, 21, 683–695.
Article CAS PubMed PubMed Central Google Scholar
Honjyo, Y., Kawamoto, Y., Nakamura, S., Nakano, S., & Akiguchi, I. (1999). Immunohistochemical localization of CDK5 activator p39 in the rat brain. NeuroReport, 10, 3375–3379.
Article CAS PubMed Google Scholar
Hulkower, M. B., Poliak, D. B., Rosenbaum, S. B., Zimmerman, M. E., & Lipton, M. L. (2013). A decade of DTI in traumatic brain injury: 10 years and 100 articles later. American Journal of Neuroradiology, 34, 2064–2074.
Article CAS PubMed PubMed Central Google Scholar
Humbert, S., Dhavan, R., & Tsai, L. (2000). p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. Journal of Cell Science, 113(Pt 6), 975–983.
Article CAS PubMed Google Scholar
Jeong, Y. G., Rosales, J. L., Marzban, H., Sillitoe, R. V., Park, D. G., et al. (2003). The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum. Neuroscience, 118, 323–334.
Article CAS PubMed Google Scholar
Jessberger, S., Gage, F. H., Eisch, A. J., & Lagace, D. C. (2009). Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends in Neurosciences, 32, 575–582.
Article CAS PubMed PubMed Central Google Scholar
Kalathur, R. K., Hernandez-Prieto, M. A., & Futschik, M. E. (2012). Huntington’s disease and its therapeutic target genes: A global functional profile based on the HD Research Crossroads database. BMC Neurology, 12, 47.
Article CAS PubMed PubMed Central Google Scholar
Kim, H. J., Tsao, J. W., & Stanfill, A. G. (2018). The current state of biomarkers of mild traumatic brain injury. Jci Insight. https://doi.org/10.1172/jci.insight.97105
Article PubMed PubMed Central Google Scholar
Kimura, T., Ishiguro, K., & Hisanaga, S. (2014). Physiological and pathological phosphorylation of tau by Cdk5. Frontiers in Molecular Neuroscience, 7, 65.
Article PubMed PubMed Central Google Scholar
Ko, J., Humbert, S., Bronson, R. T., Takahashi, S., Kulkarni, A. B., et al. (2001). p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. Journal of Neuroscience, 21, 6758–6771.
Article CAS PubMed Google Scholar
Lai, K. O., & Ip, N. Y. (2009). Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1792, 741–745.
Ledee, D. R., Gao, C. Y., Seth, R., Fariss, R. N., Tripathi, B. K., et al. (2005). A specific interaction between muskelin and the cyclin-dependent kinase 5 activator p39 promotes peripheral localization of muskelin. Journal of Biological Chemistry, 280, 21376–21383.
Article CAS PubMed Google Scholar
Li, S. S., Hua, X. Y., Zheng, M. X., Wu, J. J., Ma, Z. Z., et al. (2021). PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Experimental Neurology, 346, 113854.
Article CAS PubMed Google Scholar
Lilja, L., Johansson, J. U., Gromada, J., Mandic, S. A., Fried, G., et al. (2004). Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. Journal of Biological Chemistry, 279, 29534–29541.
Article CAS PubMed Google Scholar
Liu, F., Schafer, D. P., & McCullough, L. D. (2009). TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. Journal of Neuroscience Methods, 179, 1–8.
Article CAS PubMed PubMed Central Google Scholar
Luo, F. C., Burke, K., Kantor, C., Miller, R. H., & Yang, Y. (2014). Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling. Journal of Neuroscience, 34, 10415–10429.
Article CAS PubMed Google Scholar
Pantoni, L., Garcia, J. H., & Gutierrez, J. A. (1996). Cerebral white matter is highly vulnerable to ischemia. Stroke, 27, 1641–1646.
Article CAS PubMed Google Scholar
Qu, D., Rashidian, J., Mount, M. P., Aleyasin, H., Parsanejad, M., et al. (2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron, 55, 37–52.
Article CAS PubMed Google Scholar
Shelton, S. B., & Johnson, G. V. W. (2004). Cyclin-dependent kinase-5 in neurodegeneration. Journal of Neurochemistry, 88, 1313–1326.
Article CAS PubMed Google Scholar
Tan, X., Chen, Y., Li, J., Li, X., Miao, Z., et al. (2015). The inhibition of Cdk5 activity after hypoxia/ischemia injury reduces infarct size and promotes functional recovery in neonatal rats. Neuroscience, 290, 552–560.
Article CAS PubMed Google Scholar
Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., et al. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. Journal of Biological Chemistry, 270, 26897–26903.
Article CAS PubMed Google Scholar
Tian, F., Xu, L. H., Wang, B., Tian, L. J., & Ji, X. L. (2015). The neuroprotective mechanism of puerarin in the treatment of acute spinal ischemia-reperfusion injury is linked to cyclin-dependent kinase 5. Neuroscience Letters, 584, 50–55.
Article CAS PubMed Google Scholar
Wang, C., Pei, A. J., Chen, J., Yu, H. L., Sun, M. L., et al. (2012). A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. Journal of Neurochemistry, 121, 1007–1013.
Article CAS PubMed Google Scholar
Wang, J., Liu, S. H., Fu, Y. P., Wang, J. H., & Lu, Y. M. (2003). Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nature Neuroscience, 6, 1039–1047.
Comments (0)