Hazarika RA, Maji AK, Syiem R, Sur SN, Kandar D (2022) Hippocampus segmentation using U-Net convolutional network from brain Magnetic Resonance Imaging (MRI). J Digit Imaging 35(4):893–909
PubMed PubMed Central Google Scholar
Hua L, Gu Y, Gu X, Xue J, Ni T (2021) A novel brain MRI image segmentation method using an improved multi-view fuzzy c-means clustering algorithm. Front Neurosci 15:662674
PubMed PubMed Central Google Scholar
Yazdani S, Yusof R, Karimian A, Mitsukira Y, Hematian A (2016) Automatic region-based brain classification of MRI-T1 data. PLoS ONE 11(4):e0151326
PubMed PubMed Central Google Scholar
Jyothi P, Singh AR (2023) Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artif Intell Rev 56(4):2923–2969
Achuthan A, Rajeswari M (2021) Segmentation of hippocampus guided by assembled and weighted coherent point drift registration. J King Saud Univ Comput Inf Sci 33(8):1008–1017
Tarkhaneh O, Shen H (2019) An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst Appl 138:112820
Karimian A, Jafari S (2015) A new method to segment the multiple sclerosis lesions on brain magnetic resonance images. J Med Signals Sens 5(4):238
PubMed PubMed Central Google Scholar
Arabi H, Zaidi H (2022) MRI-guided attenuation correction in torso PET/MRI: assessment of segmentation-, atlas-, and deep learning-based approaches in the presence of outliers. Magn Reson Med 87(2):686–701
Marin-Castrillon DM et al (2023) Segmentation of the aorta in systolic phase from 4D flow MRI: multi-atlas vs. deep learning. Magn Reson Mater Phys Biol Med 36(5):687–700
Ibrahim RW, Hasan AM, Jalab HA (2018) A new deformable model based on fractional Wright energy function for tumor segmentation of volumetric brain MRI scans. Comput Methods Programs Biomed 163:21–28
Rincón M et al (2017) Improved automatic segmentation of white matter hyperintensities in MRI based on multilevel lesion features. Neuroinformatics 15(3):231–245
Huang H, Meng F, Zhou S, Jiang F, Manogaran G (2019) Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 7:12386–12396
Chen G, Li Q, Shi F, Rekik I, Pan Z (2020) RFDCR: automated brain lesion segmentation using cascaded random forests with dense conditional random fields. Neuroimage 211:116620
Subbanna NK et al (2019) Stroke lesion segmentation in FLAIR MRI datasets using customized Markov random fields. Front Neurol 10:541
PubMed PubMed Central Google Scholar
Fawzi A, Achuthan A, Belaton B (2021) Brain image segmentation in recent years: a narrative review. Brain Sci 11(8):1055
PubMed PubMed Central Google Scholar
Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H (2021) The promise of artificial intelligence and deep learning in PET and SPECT imaging. Physica Med 83:122–137
Kawakubo M et al (2022) Right ventricular strain and volume analyses through deep learning-based fully automatic segmentation based on radial long-axis reconstruction of short-axis cine magnetic resonance images. Magn Reson Mater Phys Biol Med 35(6):911–921
Cheng C et al (2024) Automatic segmentation of the interscapular brown adipose tissue in rats based on deep learning using the dynamic magnetic resonance fat fraction images. Magn Reson Mater Phys Biol Med 37(2):215–226
Hu Z, Li L, Sui A, Wu G, Wang Y, Yu J (2023) An efficient R-Transformer network with dual encoders for brain glioma segmentation in MR images. Biomed Signal Process Control 79:104034
P. Sharifian, A. Karimian, H. Arabi, and H. Zaidi, “Anatomical brain regions segmentation from MR images using global and local deep learning networks,” in 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD), 2023, pp. 1–1: IEEE
Wu B et al (2023) Automatic segmentation of human supraclavicular adipose tissue using high-resolution T2-weighted magnetic resonance imaging. Magn Reson Mater Phys Biol Med 36(4):641–649
K. Danesh, M. Azimi, P. Sharifian, A. Karimian, H. Arabi, and H. Zaidi, “Anatomical Brain segmentation from CT Images in Brain PET/CT imaging for the purpose of partial volume correction in PET imaging,” in 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 2024, pp. 1–2: IEEE
Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507
Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170:434–445
A. Anand and N. Anand (2020), “Fast Brain Volumetric Segmentation from T1 MRI Scans,” in Advances in computer vision: proceedings of the 2019 Computer Vision Conference (CVC), Volume 1, Springer, pp 402–415
LaMontagne PJ et al (2019) OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv. 7:44
Nobakht S et al (2021) Combined atlas and convolutional neural network-based segmentation of the hippocampus from MRI according to the ADNI harmonized protocol. Sensors 21(7):2427
PubMed PubMed Central Google Scholar
Gi Y et al (2024) Study of multistep Dense U-Net-based automatic segmentation for head MRI scans. Med Phys 51(3):2230–2238
Gangopadhyay T et al (2022) MTSE U-Net: an architecture for segmentation, and prediction of fetal brain and gestational age from MRI of brain. Netw Model Anal Health Inform Bioinform 11(1):50
Yee E et al (2022) 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation. Comput Med Imaging Graph 95:102000
Baniasadi M et al (2023) DBSegment: fast and robust segmentation of deep brain structures considering domain generalization. Hum Brain Mapp 44(2):762–778
Karimi H, Hamghalam M (2024) Segmentation of 3D MRI Using 2D convolutional neural networks in infant’s brain. Multimed Tools Appl 83(11):33511–33526
Kumari KV, Barpanda SS (2023) Residual UNet with dual attention—an ensemble residual UNet with dual attention for multi-modal and multi-class brain MRI segmentation. Int J Imaging Syst Technol 33(2):644–658
Torres HR et al (2024) Infant head and brain segmentation from magnetic resonance images using fusion-based deep learning strategies. Multimed Syst 30(2):71
Ahsan R, Shahzadi I, Najeeb F, Omer H (2024) Brain tumor detection and segmentation using deep learning. Magn Reson Mater Phy Biol Med 38(1):13–22
Arabi H, Zaidi H (2017) Comparison of atlas-based techniques for whole-body bone segmentation. Med Image Anal 36:98–112
Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. Springer International Publishing, Cham, pp 424–432
Godoy IRB, Silva RP, Rodrigues TC, Skaf AY, de Castro Pochini A, Yamada AF (2022) Automatic MRI segmentation of pectoralis major muscle using deep learning. Sci Rep 12(1):5300
CAS PubMed PubMed Central Google Scholar
Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M (2020) Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. Neuroimage 219:117012
Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211
Ramzan F, Khan MUG, Iqbal S, Saba T, Rehman A (2020) Volumetric segmentation of brain regions from MRI scans using 3D convolutional neural networks. IEEE Access 8:103697–103709
Qamar S, Jin H, Zheng R, Ahmad P, Usama M (2020) A variant form of 3D-UNet for infant brain segmentation. Futur Gener Comput Syst 108:613–623
Basnet R, Ahmad MO, Swamy M (2021) A deep dense residual network with reduced parameters for volumetric brain tissue segmentation from MR images. Biomed Signal Process Control 70:103063
Li Y et al (2021) Whole brain segmentation with full volume neural network. Comput Med Imaging Graph 93:101991
Li Z et al (2023) Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat). Med Image Anal 86:102744
PubMed PubMed Central Google Scholar
Peng Y, Xu Y, Wang M, Zhang H, Xie J (2023) The nnU-Net based method for automatic segmenting fetal brain tissues. Health Inf Sci Syst 11(1):17
PubMed PubMed Central Google Scholar
Avesta A, Hui Y, Aboian M, Duncan J, Krumholz H, Aneja S (2023) 3D capsule networks for brain image segmentation. AJNR 15:251
Deprest T et al (2023) Application of automatic segmentation on super-resolution reconstruction MR images of the abnormal fetal brain. Am J Neuroradiol 44(4):486–491
CAS PubMed PubMed Central Google Scholar
Zhang X, Liu Y, Guo S (2023) EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images. Comput Biol Med 158:106891
Comments (0)