Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.
Article CAS PubMed Google Scholar
Li Y, Zhu J, Yu Z, et al. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res. 2023;13(10):4832–71.
CAS PubMed PubMed Central Google Scholar
Su Y, Meng L, Ge C, et al. PSMD9 promotes the malignant progression of hepatocellular carcinoma by interacting with c-Cbl to activate EGFR signaling and recycling. J Exp Clin Cancer Res. 2024;43(1):142.
Article CAS PubMed PubMed Central Google Scholar
Feng Y, Zhang Y, Cai Y, et al. A20 targets PFKL and glycolysis to inhibit the progression of hepatocellular carcinoma. Cell Death Dis. 2020;11(2):89.
Article CAS PubMed PubMed Central Google Scholar
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20(11):1242–53.
Article CAS PubMed Google Scholar
Lu K, Pan Y, Huang Z, et al. TRIM proteins in hepatocellular carcinoma. J Biomed Sci. 2022;29(1):69.
Article CAS PubMed PubMed Central Google Scholar
Morreale FE, Walden H. Types of ubiquitin ligases. Cell. 2016;165(1):248-248.e1.
Article CAS PubMed Google Scholar
Cabana VC, Lussier MP. From drosophila to human: biological function of E3 ligase godzilla and its role in disease. Cells. 2022;11(3).
Han S, Wang R, Zhang Y, et al. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int J Biol Sci. 2022;18(6):2292–303.
Article CAS PubMed PubMed Central Google Scholar
Decoding cancer metastasis. Nat Cell Biol. 2018;20(8):859.
Yang Q, Zhao J, Chen D, et al. E3 ubiquitin ligases: styles, structures and functions. Mol Biomed. 2021;2(1):23.
Article PubMed PubMed Central Google Scholar
Uchida C, Kitagawa M. RING-, HECT-, and RBR-type E3 ubiquitin ligases: involvement in human cancer. Curr Cancer Drug Targets. 2016;16(2):157–74.
Article CAS PubMed Google Scholar
Ringelhan M, Pfister D, O’Connor T, et al. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19(3):222–32.
Article CAS PubMed Google Scholar
Fang S, Jensen JP, Ludwig RL, et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000;275(12):8945–51.
Article CAS PubMed Google Scholar
Klein AM, de Queiroz RM, Venkatesh D, et al. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev. 2021;35(9–10):575–601.
Article CAS PubMed PubMed Central Google Scholar
Meng X, Liu X, Guo X, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature. 2018;564(7734):130–5.
Article CAS PubMed Google Scholar
Hoff H, Kolar P, Ambach A, et al. CTLA-4 (CD152) inhibits T cell function by activating the ubiquitin ligase Itch. Mol Immunol. 2010;47(10):1875–81.
Article CAS PubMed Google Scholar
Bhowmick P, Pancsa R, Guharoy M, et al. Functional diversity and structural disorder in the human ubiquitination pathway. PLoS ONE. 2013;8(5): e65443.
Article CAS PubMed PubMed Central Google Scholar
Li W, Bengtson MH, Ulbrich A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE. 2008;3(1): e1487.
Article PubMed PubMed Central Google Scholar
Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.
Article CAS PubMed Google Scholar
Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009;10(6):398–409.
Article CAS PubMed Google Scholar
Wenzel DM, Lissounov A, Brzovic PS, et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature. 2011;474(7349):105–8.
Article CAS PubMed PubMed Central Google Scholar
Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–33.
Article CAS PubMed Google Scholar
Pao KC, Wood NT, Knebel A, et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature. 2018;556(7701):381–5.
Article CAS PubMed Google Scholar
Yin J, Zhu JM, Shen XZ. The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma. Int J Cancer. 2015;136(2):249–57.
Article CAS PubMed Google Scholar
Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000;19(11):1473–6.
Article CAS PubMed Google Scholar
Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2(8):594–604.
Article CAS PubMed Google Scholar
Jing Z, Nan KJ, Hu ML. Cell proliferation, apoptosis and the related regulators p27, p53 expression in hepatocellular carcinoma. World J Gastroenterol. 2005;11(13):1910–6.
Article CAS PubMed PubMed Central Google Scholar
Wang X. p53 regulation: teamwork between RING domains of Mdm2 and MdmX. Cell Cycle. 2011;10(24):4225–9.
Article CAS PubMed Google Scholar
Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol. 2003;13(1):49–58.
Article CAS PubMed Google Scholar
Chibaya L, Karim B, Zhang H, et al. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA. 2021;118(4): e2003193118.
Article CAS PubMed PubMed Central Google Scholar
Zhao Q, He W, Liu Z, et al. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov. 2023;9(1):414.
Comments (0)