Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Mol Cell. 2017;169(6):985–99.
Tamai K, Zeng X, Liu C, et al. A mechanism for Wnt coreceptor activation. Mol Cell. 2004;13(1):149–56.
Article CAS PubMed Google Scholar
He X, Semenov M, Tamai K, et al. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Devel (Cambridge, England). 2004;131(8):1663–77.
Ren Q, Chen J, Liu Y. LRP5 and LRP6 in Wnt signaling: similarity and divergence. Front Cell Devel Biol. 2021;9: 670960.
Go GW. Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients. 2015;7(6):4453–64.
Article CAS PubMed PubMed Central Google Scholar
Raisch J, Côté-Biron A, Rivard NA. Role for the WNT Co-receptor LRP6 in pathogenesis and therapy of epithelial cancers. Cancers. 2019;11(8):1162.
Article CAS PubMed PubMed Central Google Scholar
Ren DN, Chen J, Li Z, et al. LRP5/6 directly bind to frizzled and prevent frizzled-regulated tumour metastasis. Nat Commun. 2015;22(6):6906.
Zhang J, Chen J, Wo D, et al. LRP6 ectodomain prevents SDF-1/CXCR4-induced breast cancer metastasis to lung. Clin Cancer Res: an Off J Am Assoc Cancer Res. 2019;25(15):4832–45.
Jeong W, Jho EH. Regulation of the low-density lipoprotein receptor-related protein LRP6 and its association with disease: Wnt/β-catenin SIGNALING and beyond. Front Cell Devel Biol. 2021;9: 714330.
Zhang Y, Shu C, Maimaiti Y, et al. LRP6 as a biomarker of poor prognosis of breast cancer. Gland Surg. 2021;10(8):2414–27.
Article PubMed PubMed Central Google Scholar
Gong Y, Bourhis E, Chiu C, et al. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS ONE. 2010;5(9): e12682.
Article PubMed PubMed Central Google Scholar
Lu W, Li Y. Salinomycin suppresses LRP6 expression and inhibits both Wnt/β-catenin and mTORC1 signaling in breast and prostate cancer cells. J Cell Biochem. 2014;115(10):1799–807.
Article CAS PubMed PubMed Central Google Scholar
Liu CC, Prior J, Piwnica-Worms D, et al. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc Natl Acad Sci USA. 2010;107(11):5136–41.
Article CAS PubMed PubMed Central Google Scholar
Rismani E, Fazeli MS, Mahmoodzadeh H, et al. Pattern of LRP6 gene expression in tumoral tissues of colorectal cancer. Cancer Biomark: Sect Dis mark. 2017;19(2):151–9.
Lemieux E, Cagnol S, Beaudry K, et al. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 2015;34(38):4914–27.
Article CAS PubMed Google Scholar
Saito-Diaz K, Benchabane H, Tiwari A, et al. APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway. Dev Cell. 2018;44(5):566-581.e8.
Article CAS PubMed PubMed Central Google Scholar
Yao Q, An Y, Hou W, et al. LRP6 promotes invasion and metastasis of colorectal cancer through cytoskeleton dynamics. Oncotarget. 2017;8(65):109632–45.
Article PubMed PubMed Central Google Scholar
Tung EK, Wong BY, Yau TO, et al. Upregulation of the Wnt co-receptor LRP6 promotes hepatocarcinogenesis and enhances cell invasion. PLoS ONE. 2012;7(5): e36565.
Article CAS PubMed PubMed Central Google Scholar
Jia Q, Bu Y, Wang Z, et al. Maintenance of stemness is associated with the interation of LRP6 and heparin-binding protein CCN2 autocrined by hepatocellular carcinoma. J Exp Clin Can Res: CR. 2017;36(1):117.
Article PubMed PubMed Central Google Scholar
Mao X, Tey SK, Ko FCF, et al. C-terminal truncated HBx protein activates caveolin-1/LRP6/β-catenin/FRMD5 axis in promoting hepatocarcinogenesis. Can Lett. 2019;1(444):60–9.
Zeyada M, Abdel-Rahman N, El-Karef A, et al. Niclosamide-loaded polymeric micelles ameliorate hepatocellular carcinoma in vivo through targeting Wnt and notch pathways. Life Sci. 2020;261: 118458.
Article CAS PubMed Google Scholar
Lu D, Zhao Y, Tawatao R, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2004;101(9):3118–23.
Article CAS PubMed PubMed Central Google Scholar
Filipovich A, Gandhirajan RK, Gehrke I, et al. Evidence for non-functional Dickkopf-1 (DKK-1) signaling in chronic lymphocytic leukemia (CLL). Eur J Haematol. 2010;85(4):309–13.
Article CAS PubMed Google Scholar
Lu D, Choi MY, Yu J, et al. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci USA. 2011;108(32):13253–7.
Article CAS PubMed PubMed Central Google Scholar
Li L, Zeng P, Yu L, et al. Salinomycin sodium exerts anti diffuse large B-cell lymphoma activity through inhibition of LRP6-mediated Wnt/β-catenin and mTORC1 signaling. Leuk Lymph. 2023;64(6):1151–60.
Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Can. 2013;13(1):11–26.
Lindvall C, Zylstra CR, Evans N, et al. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS ONE. 2009;4(6): e5813.
Article PubMed PubMed Central Google Scholar
Zhang J, Li Y, Liu Q, et al. Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: implication for breast cancer tumorigenesis. Oncogene. 2010;29(4):539–49.
Lu W, Lin C, King TD, et al. Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells. Cell Signal. 2012;24(12):2291–6.
Article CAS PubMed PubMed Central Google Scholar
Lu W, Lin C, Li Y. Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal. 2014;26(6):1303–9.
Article CAS PubMed PubMed Central Google Scholar
Yu S, Wang Z, Su Z, et al. Gigantol inhibits Wnt/β-catenin signaling and exhibits anticancer activity in breast cancer cells. BMC Complement Altern Med. 2018;18(1):59.
Article PubMed PubMed Central Google Scholar
Wang Z, Li B, Zhou L, et al. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci USA. 2016;113(46):13150–5.
Comments (0)