R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023. CA: A Cancer J. Clin. 73(1), 17–48 (2023). https://doi.org/10.3322/caac.21763
J.W. Zhu, P. Charkhchi, S. Adekunte, M.R. Akbari, What is known about breast cancer in young women? Cancers 15(6), 1917 (2023)
Article CAS PubMed PubMed Central Google Scholar
R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA: A Cancer J. Clin. 72(1) (2022)
C. Luo, N. Li, B. Lu, J. Cai, M. Lu, Y. Zhang, H. Chen, M. Dai, Global and regional trends in incidence and mortality of female breast cancer and associated factors at national level in 2000 to 2019. Chinese Med. J. 135(01), 42–51 (2022)
J. Li, Z. Chen, K. Su, J. Zeng, Clinicopathological classification and traditional prognostic indicators of breast cancer. Int. J. Clin. Exp. Pathol. 8(7), 8500 (2015)
PubMed PubMed Central Google Scholar
A.C. Garrido-Castro, N.U. Lin, K. Polyak, Insights into Molecular Classifications of Triple-Negative Breast Cancer: improving Patient Selection for Treatment. Cancer Discovery 9(2), 176–198 (2019). https://doi.org/10.1158/2159-8290.Cd-18-1177
Article CAS PubMed PubMed Central Google Scholar
S.G. Ahn, S.J. Kim, C. Kim, J. Jeong, Molecular classification of triple-negative breast cancer. J Breast Cancer 19(3), 223 (2016)
Article PubMed PubMed Central Google Scholar
H. Muley, R. Fado, R. Rodriguez-Rodriguez, N. Casals, Drug uptake-based chemoresistance in breast cancer treatment. Biochem. Pharmacol. 177, 113959 (2020)
Article CAS PubMed Google Scholar
J. Shi, F. Liu, Y. Song, Progress: targeted therapy, immunotherapy, and new chemotherapy strategies in advanced triple-negative breast cancer, Cancer Manage. Res. 9375–9387 (2020)
A. Marra, D. Trapani, G. Viale, C. Criscitiello, G. Curigliano, Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ. Breast Cancer 6(1), 54 (2020)
Article PubMed PubMed Central Google Scholar
D. Zhao, C. Hu, Q. Fu, H. Lv, Combined chemotherapy for triple negative breast cancer treatment by paclitaxel and niclosamide nanocrystals loaded thermosensitive hydrogel. Eur. J. Pharm. Sci. 167, 105992 (2021). https://doi.org/10.1016/j.ejps.2021.105992
Article CAS PubMed Google Scholar
A.R.T. Bergin, S. Loi, Triple-negative breast cancer: recent treatment advances. F1000Res 8 (2019). https://doi.org/10.12688/f1000research.18888.1
S. Boichuk, P. Dunaev, I. Mustafin, S. Mani, K. Syuzov, E. Valeeva, F. Bikinieva, A. Galembikova, Infigratinib (BGJ 398), a Pan-FGFR Inhibitor, Targets P-Glycoprotein and Increases Chemotherapeutic-Induced Mortality of Multidrug-Resistant Tumor Cells. Biomedicines 10, 3 (2022). https://doi.org/10.3390/biomedicines10030601
L. Mosca, A. Ilari, F. Fazi, Y.G. Assaraf, G. Colotti, Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug. Resist. Updates 54, 100742 (2021). https://doi.org/10.1016/j.drup.2020.100742
T. Avril, E. Vauléon, E. Chevet, Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6(8), e373 (2017). https://doi.org/10.1038/oncsis.2017.72
Article CAS PubMed PubMed Central Google Scholar
M. Wang, R.J. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529(7586), 326–335 (2016). https://doi.org/10.1038/nature17041
Article CAS PubMed Google Scholar
M.C. Kopp, N. Larburu, V. Durairaj, C.J. Adams, M.M.U. Ali, UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat. Struct. Mol. Biol. 26(11), 1053–1062 (2019). https://doi.org/10.1038/s41594-019-0324-9
Article CAS PubMed PubMed Central Google Scholar
C. Hetz, K. Zhang, R.J. Kaufman, Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21(8), 421–438 (2020). https://doi.org/10.1038/s41580-020-0250-z
Article CAS PubMed PubMed Central Google Scholar
A. Read, M. Schröder, The unfolded protein response: an overview. Biology 10(5) (2021). https://doi.org/10.3390/biology10050384
S.M. Park, T.I. Kang, J.S. So, Roles of XBP1s in transcriptional regulation of target genes. Biomedicines 9(7) (2021). https://doi.org/10.3390/biomedicines9070791
X. Chen, J.R. Cubillos-Ruiz, Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21(2), 71–88 (2021). https://doi.org/10.1038/s41568-020-00312-2
Article CAS PubMed Google Scholar
P. Walter, D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science (New York, N.Y.) 334(6059), 1081–1086 (2011). https://doi.org/10.1126/science.1209038
Article CAS PubMed Google Scholar
Y. Xie, C. Liu, Y. Qin, J. Chen, J. Fang, Knockdown of IRE1ɑ suppresses metastatic potential of colon cancer cells through inhibiting FN1-Src/FAK-GTPases signaling. Int. J. Biochem. Cell Biol. 114, 105572 (2019). https://doi.org/10.1016/j.biocel.2019.105572
Article CAS PubMed Google Scholar
D. Xu, Z. Liu, M.-X. Liang, Y.-J. Fei, W. Zhang, Y. Wu, J.-H. Tang, Endoplasmic reticulum stress targeted therapy for breast cancer. Cell Commun. Signal. 20(1), 174 (2022)
Article PubMed PubMed Central Google Scholar
L. Sisinni, M. Pietrafesa, S. Lepore, F. Maddalena, V. Condelli, F. Esposito, M. Landriscina, Endoplasmic reticulum stress and unfolded protein response in breast cancer: the balance between apoptosis and autophagy and its role in drug resistance. Int. J. Mol. Sci. 20(4), 857 (2019)
Article CAS PubMed PubMed Central Google Scholar
P. Wang, D. Song, D. Wan, L. Li, W. Mei, X. Li, L. Han, X. Zhu, L. Yang, Y. Cai, R. Zhang, Ginsenoside panaxatriol reverses TNBC paclitaxel resistance by inhibiting the IRAK1/NF-κB and ERK pathways. PeerJ 8, e9281 (2020). https://doi.org/10.7717/peerj.9281
Article CAS PubMed PubMed Central Google Scholar
K. Xu, W. Zhu, A. Xu, Z. Xiong, D. Zou, H. Zhao, D. Jiao, Y. Qing, M.A. Jamal, H.J. Wei, H.Y. Zhao, Inhibition of FOXO1‑mediated autophagy promotes paclitaxel‑induced apoptosis of MDA‑MB‑231 cells. Mol. Med. Rep. 25(2) (2022). https://doi.org/10.3892/mmr.2022.12588
G. Kim, S.K. Jang, Y.J. Kim, H.O. Jin, S. Bae, J. Hong, I.C. Park, J.H. Lee, Inhibition of Glutamine Uptake Resensitizes Paclitaxel Resistance in SKOV3-TR Ovarian Cancer Cell via mTORC1/S6K Signaling Pathway. Int. J. Mol. Sci. 23, 15 (2022). https://doi.org/10.3390/ijms23158761
J.A. Zundell, T. Fukumoto, J. Lin, N. Fatkhudinov, T. Nacarelli, A.V. Kossenkov, Q. Liu, J. Cassel, C.A. Hu, S. Wu, R. Zhang, Targeting the IRE1α/XBP1 endoplasmic reticulum stress response pathway in ARID1A-mutant ovarian cancers. Cancer Res. 81(20), 5325–5335 (2021). https://doi.org/10.1158/0008-5472.Can-21-1545
Article CAS PubMed PubMed Central Google Scholar
Y. Xu, P. Huangyang, Y. Wang, L. Xue, E. Devericks, H.G. Nguyen, X. Yu, J.A. Oses-Prieto, A.L. Burlingame, S. Miglani, et al., ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell 184(20), 5215–5229.e5217 (2021). https://doi.org/10.1016/j.cell.2021.08.036
Article CAS PubMed PubMed Central Google Scholar
M.J.P. Crowley, B. Bhinder, G.J. Markowitz, M. Martin, A. Verma, T.A. Sandoval, C.S. Chae, S. Yomtoubian, Y. Hu, S. Chopra, et al., Tumor-intrinsic IRE1α signaling controls protective immunity in lung cancer. Nat. Commun. 14(1), 120 (2023). https://doi.org/10.1038/s41467-022-35584-9
Article CAS PubMed PubMed Central Google Scholar
X. Chen, D. Iliopoulos, Q. Zhang, Q. Tang, M.B. Greenblatt, M. Hatziapostolou, E. Lim, W.L. Tam, M. Ni, Y. Chen, et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508(7494), 103–107 (2014). https://doi.org/10.1038/nature13119
Comments (0)