Gpmb-yolo: a lightweight model for efficient blood cell detection in medical imaging

Kutlu H, Avci E, Özyurt F. White blood cells detection and classification based on regional convolutional neural networks. Med Hypotheses. 2020;135: 109472.

Article  CAS  PubMed  Google Scholar 

Bain BJ. Blood cells: a practical guide. New York: Wiley; 2021.

Google Scholar 

Gordon-Smith T. Structure and function of red and white blood cells. Medicine. 2013;41:193–9.

Article  Google Scholar 

Hamasaki N, Yamamoto M. Red blood cell function and blood storage. Vox Sang. 2000;79:191–7.

Article  CAS  PubMed  Google Scholar 

Harrison P. Platelet function analysis. Blood Rev. 2005;19:111–23.

Article  PubMed  Google Scholar 

Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341(14):1051–62.

Article  CAS  PubMed  Google Scholar 

Cascio MJ, DeLoughery TG. Anemia: evaluation and diagnostic tests. Med Clin. 2017;101(2):263–84.

Google Scholar 

Gauer RL, Braun MM. Thrombocytopenia. Am Fam Phys. 2012;85(6):612–22.

Google Scholar 

Haden RL. The origin of the microscope. Ann Med Hist. 1939;1:30.

PubMed  PubMed Central  Google Scholar 

Bardell D. The invention of the microscope. Bios. 2004;75:78–84.

Article  Google Scholar 

Schmid-Schönbein H, Gosen JV, Heinich L, Klose HJ, Volger E. A counter-rotating, “Rheoscope Chamber’’ for the Study of the microrheology of blood cell aggregation by microscopic observation and microphotometry. Microvasc Res. 1973;6:366–76.

Article  PubMed  Google Scholar 

Rebuck JW, Woods HL. Electron microscope studies of blood cells. Blood. 1948;3:175–91.

Article  CAS  PubMed  Google Scholar 

Wang H, Lei Z, Zhang X, Zhou B, Peng J. Machine learning basics. Deep Learn. 2016; 98–164.

Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255–60. https://doi.org/10.1126/science.aaa8415.

Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

Zhao Z-Q, Zheng P, Xu S, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2019;30:3212–32.

Article  PubMed  Google Scholar 

Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.

Article  CAS  PubMed  Google Scholar 

Zhang J, Zhang Y, Jin Y, et al. MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation. Health Inf Sci Syst. 2023;11:13. https://doi.org/10.1007/s13755-022-00204-9.

Article  PubMed  Google Scholar 

Dar RA, Rasool M, Assad A. Breast cancer detection using deep learning: datasets, methods, and challenges ahead. Comput Biol Med. 2022;149: 106073.

Article  PubMed  Google Scholar 

Daoud H, Bayoumi MA. Efficient epileptic seizure prediction based on deep learning. IEEE Trans Biomed Circ Syst. 2019;13(5):804–13.

Article  Google Scholar 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

Article  ADS  CAS  PubMed  Google Scholar 

Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: a review. Neurocomputing. 2016;187:27–48.

Article  Google Scholar 

Redmon J, Divvala S, Girshick R, Farhadi, A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. pp. 779–788.

Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. pp. 7263–7271.

Redmon J, Farhadi A. YOLOv3: an incremental improvement 2018.

Bochkovskiy A, Wang C-Y, Liao H-YM. YOLOv4: optimal speed and accuracy of object detection; 2020.

Thuan D. Evolution of Yolo Algorithm and Yolov5: the state-of-the-art object detention algorithm; 2021.

Li C, Li L, Jiang H, Weng K, Geng Y, Li L, Ke Z, Li Q, Cheng M, Nie W, et al. YOLOv6: a single-stage object detection framework for industrial applications; 2022.

Wang C-Y, Bochkovskiy A, Liao H-YM. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of IEEE/CVF conference on computer vision and pattern recognition; 2023. pp. 7464–7475.

Jiang P, Ergu D, Liu F, Cai Y, Ma B. A review of Yolo algorithm developments. Procedia Comput Sci. 2022;199:1066–73. https://doi.org/10.1016/j.procs.2022.01.135.

Article  Google Scholar 

Gai R, Chen N, Yuan H. A detection algorithm for Cherry fruits based on the improved YOLO-v4 model. Neural Comput Appl. 2023;35:13895–906. https://doi.org/10.1007/s00521-021-06029-z.

Article  Google Scholar 

Liu W, Ren G, Yu R, Guo S, Zhu J, Zhang L. Image-adaptive YOLO for object detection in adverse weather conditions. In: Proceedings of the AAAI conference on artificial intelligence, vol. 36; 2022. pp. 1792–800.

Wu S, Zhang L. Using popular object detection methods for real time forest fire detection. In: Proceedings of the 2018 11th international symposium on computational intelligence and design (ISCID), vol. 01; 2018. pp. 280–284.

Wang S, Luo J, Zhou Q, Ren X, Zhang, Y. A differential diagnose method for dermoscopy images. In: 2023 15th international conference on advanced computational intelligence (ICACI), Seoul, Korea, Republic of, 2023, pp. 1–8,.https://doi.org/10.1109/ICACI58115.2023.10146178.

Laroca R, Severo E, Zanlorensi LA, Oliveira LS, Gonçalves GR, Schwartz WR, Menotti D. A robust real-time automatic license plate recognition based on the YOLO detector. In: Proceedings of the 2018 international joint conference on neural networks (ijcnn); IEEE; 2018. pp. 1–10.

Kuznetsova A, Maleva T, Soloviev V. Detecting Apples in Orchards Using YOLOv3 and YOLOv5 in General and Close-up Images. In: Proceedings of the advances in neural networks-ISNN 2020: 17th international symposium on neural networks, ISNN 2020, Cairo, Egypt, December 4–6, 2020, Proceedings 17; Springer; 2020. pp. 233–243.

Banik PP, Saha R, Kim KD. An automatic nucleus segmentation and CNN model based classification method of white blood cell. Expert Syst Appl. 2020;149: 113211.

Article  Google Scholar 

Leng B, Leng M, Ge M, et al. Knowledge distillation-based deep learning classification network for peripheral blood leukocytes. Biomed Signal Process Control. 2022;75: 103590.

Article  Google Scholar 

Hosseini M, Bani-Hani D, Lam SS. Leukocytes image classification using optimized convolutional neural networks. Expert Syst Appl. 2022;205: 117672.

Article  Google Scholar 

Zhao J, Zhang M, Zhou Z, Chu J, Cao F. Automatic identifying and counting blood cells in smear images. Med Biol Eng Comput. 2017;55:1287–301. https://doi.org/10.1007/s11517-016-1590-x.

Article  PubMed  Google Scholar 

Raina S, Khandelwal A, Gupta S, et al. Blood cells detection using faster-RCNN. In: 2020 IEEE international conference on computing, power and communication technologies (GUCON). IEEE; 2020. pp. 217–222.

Alam MM, Islam MT. Machine learning approach of automatic identification and counting of blood cells. Healthc Technol Lett. 2019;6:103–8. https://doi.org/10.1049/htl.2018.5098.

Article  PubMed  PubMed Central  Google Scholar 

Rohaziat N, Razali M, Nurshazwani W, Othman N. White blood cells detection using YOLOv3 with CNN feature extraction models. IJACSA; 2020, 11. https://doi.org/10.14569/IJACSA.2020.0111058.

Xia T, Fu YQ, Jin N, Chazot P, Angelov P, Jiang R. AI-enabled microscopic blood analysis for microfluidic COVID-19 hematology. In: Proceedings of the 2020 5th international conference on computational intelligence and applications (ICCIA); IEEE; 2020. pp. 98–102.

Liu R, Ren C, Fu M, Chu Z, Guo J. Platelet detection based on improved YOLO_v3. Cyborg Bionic Syst 2022, 2022, 2022/9780569, https://doi.org/10.34133/2022/9780569.

Chen Y-M, Tsai J-T, Ho W-H. Automatic identifying and counting blood cells in smear images by using single shot detector and Taguchi method. BMC Bioinform. 2022;22:635. https://doi.org/10.1186/s12859-022-05074-2.

Article  CAS  Google Scholar 

Shakarami A, Menhaj MB, Mahdavi-Hormat A, Tarrah H. A fast and yet efficient YOLOv3 for blood cell detection. Biomed Signal Process Control. 2021;66: 102495. https://doi.org/10.1016/j.bspc.2021.102495.

Article  Google Scholar 

Liu C, Li D, Huang P. ISE-YOLO: improved squeeze-and-excitation attention module based YOLO for blood cells detection. In: Proceedings of the 2021 IEEE international conference on big data (Big Data); IEEE; 2021. pp. 3911–3916.

Xu F, Li X, Yang H, Wang Y, Xiang W. TE-YOLOF: tiny and efficient YOLOF for blood cell detection. Biomed Signal Process Control. 2022;73: 103416. https://doi.org/10.1016/j.bspc.2021.103416.

Article  Google Scholar 

Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. GhostNet: more features from cheap operations. In Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR); 2020. pp. 1577–1586.

Chen J, Kao S, He H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2023. pp. 12021–12031.

Yang L, Zhang R Y, Li L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks. In: International conference on machine learning. PMLR; 2021. pp. 11863–11874.

Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. pp. 8759–8768.

Tan M, Pang R, Le QV. EfficientDet: scalable and efficient object detection. In: Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR); 2020. pp. 10778–10787.

Yu Y, Zhang Y, Cheng Z, et al. MCA: multidimensional collaborative attention in deep convolutional neural networks for image recognition. Eng Appl Artif Intell. 2023;126: 107079.

Article  Google Scholar 

Holland JH. Genetic algorithms. Sci Am. 1992;267(1):66–73.

Article  ADS  Google Scholar 

Zhu D, Wang S, Zhou C, et al. Human memory optimization algorithm: a memory-inspired optimizer for global optimization problems. Expert Syst Appl. 2024;237: 121597.

Article  Google Scholar 

Slowik A, Kwasnicka H. Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl. 2020;32:12363–79.

Comments (0)

No login
gif