Treadmill exercise promotes bone tissue recovery in rats subjected to high + Gz loads

Lu Y, Shuping W, Biao H, Lilan G, Yang Z, Xizheng Z (2022) Biomedical response of femurs in male wistar rat in chronic hypergravity environments. Medicine in Novel Technology and Devices 16:100161. https://doi.org/10.1016/J.MEDNTD.2022.100161

Article  Google Scholar 

Jamon M, Serradj N (2009) Ground-based researches on the effects of altered gravity on mice development. Microgravity Sci Technol 21:327–337. https://doi.org/10.1007/s12217-008-9098-0

Article  Google Scholar 

Smith SD (1975) Effects of long-term rotation and hypergravity on developing rat femurs. Aviat Space Environ Med 46:248–253 (https://europepmc.org/article/med/1115727)

CAS  PubMed  Google Scholar 

Kawashima K, Shibata R, Negishi Y, Endo H (1998) Stimulative effect of high-level hypergravity on differentiated functions of osteoblast-like cells. Cell Struct Funct 23:221–229. https://doi.org/10.1247/csf.23.221

Article  CAS  PubMed  Google Scholar 

Furutsu M, Kawashima K, Negishi Y, Endo H (2000) Bidirectional effects of hypergravity on the cell growth and differentiated functions of osteoblast-like ROS17/2.8 cells. Biol Pharm Bull 23:1258–1261. https://doi.org/10.1248/bpb.23.1258

Article  CAS  PubMed  Google Scholar 

Argyrou C, Lambrou GI (2019) Hypergravity and its effects on bones and the musculoskeletal system: a narrative review. Journal of Research and Practice on the Musculoskeletal System 3:1–4. https://doi.org/10.22540/JRPMS-03-001

Article  Google Scholar 

Naumann FL, Bennell KL, Wark JD (2001) The effects of +Gz force on the bone mineral density of fighter pilots. Aviat Space Environ Med 72:177–181 (https://europepmc.org/article/med/11277282)

CAS  PubMed  Google Scholar 

Stratos I, Rinas I, Schröpfer K, Hink K, Herlyn P, Bäumler M, Histing T, Bruhn S, Müller-Hilke B, Menger MD, Vollmar B, Mittlmeier T (2023) Effects on bone and muscle upon treadmill interval training in hypogonadal male rats. Biomedicines 11:1370. https://doi.org/10.3390/biomedicines11051370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeh JK, Liu CC, Aloia JF (1993) Effects of exercise and immobilization on bone formation and resorption in young rats. J Appl Physiol Endocrinol Metab 264:E182–E189. https://doi.org/10.1152/ajpendo.1993.264.2.E182

Article  CAS  Google Scholar 

Wazzani R, Bourzac C, Elhafci H, Germain P, Ahmaidi S, Pallu S, Jaffré C, Portier H (2023) Comparative effects of various running exercise modalities on femoral bone quality in rats. Eur J Appl Physiol. https://doi.org/10.1007/s00421-023-05293-2

Article  PubMed  Google Scholar 

Gao L, Li Y, Yang YJ, Zhang DY (2021) The effect of moderate-intensity treadmill exercise on bone mass and the transcription of peripheral blood mononuclear cells in ovariectomized rats. Front Physiol 12:729910. https://doi.org/10.3389/fphys.2021.729910

Article  PubMed  PubMed Central  Google Scholar 

Grasso D, Corsetti R, Lanteri P, Di Bernardo C, Colombini A, Graziani R, Banfi G, Lombardi G (2015) Bone-muscle unit activity, salivary steroid hormones profile, and physical effort over a 3-week stage race. Scand J Med Sci Sports 25:70–80. https://doi.org/10.1111/sms.12147

Article  CAS  PubMed  Google Scholar 

Gardinier JD, Rostami N, Juliano L, Zhang C (2018) Bone adaptation in response to treadmill exercise in young and adult mice. Bone Rep 8:29–37. https://doi.org/10.1016/j.bonr.2018.01.003

Article  PubMed  PubMed Central  Google Scholar 

Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J Biol Chem 283:5866–5875. https://doi.org/10.1074/jbc.M705092200

Article  CAS  PubMed  Google Scholar 

Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50:209–217. https://doi.org/10.1016/j.bone.2011.10.025

Article  CAS  PubMed  Google Scholar 

Fang J, Gao J, Gong H, Zhang T, Zhang R, Zhan B (2019) Multiscale experimental study on the effects of different weight-bearing levels during moderate treadmill exercise on bone quality in growing female rats. Biomed Eng Online 18:33. https://doi.org/10.1186/s12938-019-0654-1

Article  PubMed  PubMed Central  Google Scholar 

Portier H, Benaitreau D, Pallu S (2020) Does physical exercise always improve bone quality in rats? Life 10:217. https://doi.org/10.3390/life10100217

Article  PubMed  PubMed Central  Google Scholar 

Yamamoto T, Ikegame M, Furusawa Y, Tabuchi Y, Hatano K, Watanabe K, Kawago U, Hirayama J, Yano S, Sekiguchi T, Kitamura KI, Endo M, Nagami A, Matsubara H, Maruyama Y, Hattori A, Suzuki N (2022) Osteoclastic and osteoblastic responses to hypergravity and microgravity: analysis using goldfish scales as a bone model. Zoolog Sci 39:388–396. https://doi.org/10.2108/zs210107

Article  Google Scholar 

Lawrence EA, Aggleton J, van Loon J, Godivier J, Harniman R, Pei J, Nowlan N, Hammond C (2021) Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution. Bone Joint Res 10:137–148. https://doi.org/10.1302/2046-3758.102.bjr-2020-0239.r1

Article  PubMed  PubMed Central  Google Scholar 

Hodkinson PD, Anderton RA, Posselt BN, Fong KJ (2017) An overview of space medicine. Br J Anaesth 119:i143–i153. https://doi.org/10.1093/bja/aex336

Article  CAS  PubMed  Google Scholar 

Morita S, Nakamura H, Kumei Y, Shimokawa H, Ohya K, Shinomiya K (2004) Hypergravity stimulates osteoblast phenotype expression: a therapeutic hint for disuse bone atrophy. Ann N Y Acad Sci 1030:158–161. https://doi.org/10.1196/annals.1329.020

Article  CAS  PubMed  Google Scholar 

Bojados M, Herbin M, Jamon M (2013) Kinematics of treadmill locomotion in mice raised in hypergravity. Behav Brain Res 244:48–57. https://doi.org/10.1016/j.bbr.2013.01.017

Article  PubMed  Google Scholar 

Iwamoto D, Masaki C, Shibata Y, Watanabe C, Nodai T, Munemasa T, Mukaibo T, Kondo Y, Hosokawa R (2021) Microstructural and mechanical recovery of bone in ovariectomized rats: the effects of menaquinone-7. J Mech Behav Biomed Mater 120:104571. https://doi.org/10.1016/j.jmbbm.2021.104571

Article  CAS  PubMed  Google Scholar 

Wu Q, Zhong P, Ning P, Tan L, Huang X, Peng T, Yin L, Luo F, Qu M, Zhou J (2022) Treadmill training mitigates bone deterioration via inhibiting NLRP3/Caspase1/IL-1β signaling in aged rats. BMC Musculoskelet Disord 23:1089. https://doi.org/10.1186/s12891-022-06055-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Macedo AP, Shimano RC, Ferrari DT, Issa JP, Jordão AA, Shimano AC (2017) Influence of treadmill training on bone structure under osteometabolic alteration in rats subjected to high-fat diet. Scand J Med Sci Sports 27:167–176. https://doi.org/10.1111/sms.12650

Article  CAS  PubMed  Google Scholar 

Iwamoto J, Shimamura C, Takeda T, Abe H, Ichimura S, Sato Y, Toyama Y (2004) Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing rats. J Bone Miner Metab 22:26–31. https://doi.org/10.1007/s00774-003-0443-5

Article  CAS  PubMed  Google Scholar 

Song JQ, Dong F, Li X, Xu CP, Cui Z, Jiang N, Jia JJ, Yu B (2014) Effect of treadmill exercise timing on repair of full-thickness defects of articular cartilage by bone-derived mesenchymal stem cells: an experimental investigation in rats. PLoS ONE 9:e90858. https://doi.org/10.1371/journal.pone.0090858

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV (1979) Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol Respir Environ Exerc Physiol 47:1278–1283. https://doi.org/10.1152/jappl.1979.47.6.1278

Article  CAS  PubMed 

Comments (0)

No login
gif