Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Human reproduction (Oxford, England). 2011;26:1768–74. https://doi.org/10.1093/humrep/der106.
Esteves SC, Carvalho JF, Bento FC, Santos J. A novel predictive model to estimate the number of mature oocytes required for obtaining at least one euploid blastocyst for transfer in couples undergoing in vitro fertilization/intracytoplasmic sperm injection: the ART calculator. Front Endocrinol (Lausanne). 2019;10:99. https://doi.org/10.3389/fendo.2019.00099.
Broer SL, van Disseldorp J, Broeze KA, Dolleman M, Opmeer BC, Bossuyt P, et al. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update. 2013;19:26–36. https://doi.org/10.1093/humupd/dms041.
Mutlu MF, Erdem M, Erdem A, Yildiz S, Mutlu I, Arisoy O, et al. Antral follicle count determines poor ovarian response better than anti-Müllerian hormone but age is the only predictor for live birth in in vitro fertilization cycles. J Assist Reprod Genet. 2013;30:657–65. https://doi.org/10.1007/s10815-013-9975-3.
Article PubMed PubMed Central Google Scholar
van Loendersloot LL, van Wely M, Limpens J, Bossuyt PM, Repping S, van der Veen F. Predictive factors in in vitro fertilization (IVF): a systematic review and meta-analysis. Hum Reprod Update. 2010;16:577–89. https://doi.org/10.1093/humupd/dmq015.
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat Res Rev Mutat Res. 2020;785: 108320. https://doi.org/10.1016/j.mrrev.2020.108320.
Article CAS PubMed Google Scholar
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: a molecular cell perspective. WIREs Mech Dis. 2023:e1613. https://doi.org/10.1002/wsbm.1613.
Tatone C, Amicarelli F. The aging ovary–the poor granulosa cells. Fertil Steril. 2013;99:12–7. https://doi.org/10.1016/j.fertnstert.2012.11.029.
Article CAS PubMed Google Scholar
Li CJ, Lin LT, Tsai HW, Chern CU, Wen ZH, Wang PH, et al. The molecular regulation in the pathophysiology in ovarian aging. Aging Dis. 2021;12:934–49. https://doi.org/10.14336/ad.2020.1113.
Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod. 2011;84:775–82. https://doi.org/10.1095/biolreprod.110.088583.
Article CAS PubMed Google Scholar
Rodríguez-Nuevo A, Torres-Sanchez A, Duran JM, De Guirior C, Martínez-Zamora MA, Böke E. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature. 2022;607:756–61. https://doi.org/10.1038/s41586-022-04979-5.
Article CAS PubMed PubMed Central Google Scholar
Smits MAJ, Schomakers BV, van Weeghel M, Wever EJM, Wüst RCI, Dijk F, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Human reproduction (Oxford, England). 2023. https://doi.org/10.1093/humrep/dead177.
Ammar OF, Massarotti C, Mincheva M, Sharma K, Liperis G, Herraiz S, et al. Oxidative stress and ovarian aging: from cellular mechanisms to diagnostics and treatment. Human reproduction (Oxford, England). 2024. https://doi.org/10.1093/humrep/deae082.
Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64:577–83.
Article CAS PubMed Google Scholar
Barritt JA, Cohen J, Brenner CA. Mitochondrial DNA point mutation in human oocytes is associated with maternal age. Reprod Biomed Online. 2000;1:96–100. https://doi.org/10.1016/s1472-6483(10)61946-3.
Article CAS PubMed Google Scholar
Chan CC, Liu VW, Lau EY, Yeung WS, Ng EH, Ho PC. Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. Mol Hum Reprod. 2005;11:843–6. https://doi.org/10.1093/molehr/gah243.
Article CAS PubMed Google Scholar
Yang L, Lin X, Tang H, Fan Y, Zeng S, Jia L, et al. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD(+) redox. Aging Cell. 2020;19: e13206. https://doi.org/10.1111/acel.13206.
Article CAS PubMed PubMed Central Google Scholar
Martino NA, Lacalandra GM, Filioli Uranio M, Ambruosi B, Caira M, Silvestre F, et al. Oocyte mitochondrial bioenergy potential and oxidative stress: within-/between-subject, in vivo versus in vitro maturation, and age-related variations in a sheep model. Fertil Steril. 2012;97:720-8.e1. https://doi.org/10.1016/j.fertnstert.2011.12.014.
Article CAS PubMed Google Scholar
Takeo S, Kawahara-Miki R, Goto H, Cao F, Kimura K, Monji Y, et al. Age-associated changes in gene expression and developmental competence of bovine oocytes, and a possible countermeasure against age-associated events. Mol Reprod Dev. 2013;80:508–21. https://doi.org/10.1002/mrd.22187.
Article CAS PubMed Google Scholar
Mihalas BP, De Iuliis GN, Redgrove KA, McLaughlin EA, Nixon B. The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Sci Rep. 2017;7:6247. https://doi.org/10.1038/s41598-017-06372-z.
Article CAS PubMed PubMed Central Google Scholar
Wu X, Hu F, Zeng J, Han L, Qiu D, Wang H, et al. NMNAT2-mediated NAD(+) generation is essential for quality control of aged oocytes. Aging Cell. 2019;18: e12955. https://doi.org/10.1111/acel.12955.
Article CAS PubMed PubMed Central Google Scholar
Ntostis P, Iles D, Kokkali G, Vaxevanoglou T, Kanavakis E, Pantou A, et al. The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes. Human reproduction (Oxford, England). 2021;37:80–92. https://doi.org/10.1093/humrep/deab226.
Article CAS PubMed Google Scholar
Babayev E, Wang T, Szigeti-Buck K, Lowther K, Taylor HS, Horvath T, et al. Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas. 2016;93:121–30. https://doi.org/10.1016/j.maturitas.2016.06.015.
Article CAS PubMed PubMed Central Google Scholar
Kansaku K, Takeo S, Itami N, Kin A, Shirasuna K, Kuwayama T, et al. Maternal aging affects oocyte resilience to carbonyl cyanide-m-chlorophenylhydrazone -induced mitochondrial dysfunction in cows. PLoS ONE. 2017;12: e0188099. https://doi.org/10.1371/journal.pone.0188099.
Article CAS PubMed PubMed Central Google Scholar
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reproductive biology and endocrinology : RB&E. 2012;10:49. https://doi.org/10.1186/1477-7827-10-49.
Yang Y, Sauve AA. NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochem Biophys Acta. 2016;1864:1787–800. https://doi.org/10.1016/j.bbapap.2016.06.014.
Article CAS PubMed Google Scholar
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal. 2018;28:643–61. https://doi.org/10.1089/ars.2017.7290.
Article CAS PubMed PubMed Central Google Scholar
Wu YT, Wu SB, Wei YH. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free Radic Res. 2014;48:1070–84. https://doi.org/10.3109/10715762.2014.920956.
Article CAS PubMed Google Scholar
Di Emidio G, Falone S, Vitti M, D’Alessandro AM, Vento M, Di Pietro C, et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Human reproduction (Oxford, England). 2014;29:2006–17. https://doi.org/10.1093/humrep/deu160.
Article CAS PubMed Google Scholar
Zhang L, Hou X, Ma R, Moley K, Schedl T, Wang Q. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. Faseb j. 2014;28:1435–45. https://doi.org/10.1096/fj.13-244111.
Comments (0)