CATSPER2 and SPEF2 are potential molecular markers for boar sperm quality: a population association study

Lin C, et al. Candidate gene markers for sperm quality and fertility of boar. Anim Reprod Sci. 2006;92(3–4):349–63.

Article  CAS  PubMed  Google Scholar 

Rahman MS, Kwon WS, Pang MG. Prediction of male fertility using capacitation-associated proteins in spermatozoa. Mol Reprod Dev. 2017;84(9):749–59.

Article  CAS  PubMed  Google Scholar 

Braundmeier A, Miller DJ. Invited review: the search is on: finding accurate molecular markers of male fertility. J Dairy Sci. 2001;84(9):1915–25.

Article  CAS  PubMed  Google Scholar 

Linville R, et al. Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J Anim Sci. 2001;79(1):60–7.

Article  CAS  PubMed  Google Scholar 

Ma C, et al. Discovery of two potential DAZL gene markers for sperm quality in boars by population association studies. Anim Reprod Sci. 2013;143(1–4):97–101.

Article  CAS  PubMed  Google Scholar 

Lobley A, et al. Identification of human and mouse CatSper3 and CatSper4 genes: characterisation of a common interaction domain and evidence for expression in testis. Reprod Biol Endocrinol. 2003;1:1–15.

Article  Google Scholar 

Qi H, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci. 2007;104(4):1219–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung J-JL, et al. A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Biophys J. 2011;100(3):90a.

Article  Google Scholar 

Sun X-H, et al. The Catsper channel and its roles in male fertility: a systematic review. Reprod Biol Endocrinol. 2017;15:1–12.

Article  Google Scholar 

Guo F, et al. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls. Reproduction. 2014;147(2):241–52.

Article  CAS  PubMed  Google Scholar 

Sironen A, et al. Expression of SPEF2 during mouse spermatogenesis and identification of IFT20 as an interacting protein. Biol Reprod. 2010;82(3):580–90.

Article  CAS  PubMed  Google Scholar 

Ostrowski LE, et al. Cloning and characterization of KPL2, a novel gene induced during ciliogenesis of tracheal epithelial cells. Am J Respir Cell Mol Biol. 1999;20(4):675–83.

Article  CAS  PubMed  Google Scholar 

Sironen A, et al. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig. Proc Natl Acad Sci. 2006;103(13):5006–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKenna A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5(3):299–314.

Article  Google Scholar 

Yong Y, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97.

Article  Google Scholar 

Jamrozik J, et al. Analysis of persistency of lactation calculated from a random regression test day model. Interbull bulletin. 1998;17:110–110.

Google Scholar 

See M. Selection for AI Stud traits. In: Proceedings National Swine Improvement Federation Conference and Annual Meeting. Nashville, Tennessee, USA; 2000.

Fröjdö S, et al. Polymorphisms in the gene encoding angiotensin I converting enzyme 2 and diabetic nephropathy. Diabetologia. 2005;48(11):2278–81.

Article  PubMed  Google Scholar 

Ma C, et al. Discovery of two potential DAZL gene markers for sperm quality in boars by population association studies. Anim Reprod Sci. 2013;143(1–4):97–101.

Article  CAS  PubMed  Google Scholar 

Baldi E, et al. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci. 2000;5(4):110–23.

Article  Google Scholar 

O’Flaherty CJA. Reactive oxygen species and male fertility. Antioxidants. 2020;9:287.

Article  PubMed  PubMed Central  Google Scholar 

Navarrete FA, et al. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J Cell Physiol. 2015;230(8):1758–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yathish H, et al. Nucleotide variability of protamine genes influencing bull sperm motility variables. Anim Reprod Sci. 2018;193:126–39.

Article  CAS  Google Scholar 

Luo T, et al. A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters. Hum Reprod. 2019;34(3):414–23.

Article  PubMed  Google Scholar 

Ren D, et al. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413(6856):603–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quill TA, et al. A voltage-gated ion channel expressed specifically in spermatozoa. Proc Natl Acad Sci. 2001;98(22):12527–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin J-L, et al. Catsper3 and catsper4 encode two cation channel-like proteins exclusively expressed in the testis. Biol Reprod. 2005;73(6):1235–42.

Article  CAS  PubMed  Google Scholar 

Darszon A, et al. T-type Ca2+ channels in sperm function. Cell Calcium. 2006;40(2):241–52.

Article  CAS  PubMed  Google Scholar 

Ren D, et al. A sperm ion channel required for sperm motility and male fertility. 2001;413(6856):603–9.

CAS  Google Scholar 

Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82(3):769–824.

Article  CAS  PubMed  Google Scholar 

Saunders MA, Liang H, Li W-H. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci. 2007;104(9):3300–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen R, et al. Detection of one large insertion/deletion (indel) and two novel SNPs within the SPEF2 gene and their associations with male piglet reproduction traits. Arch Anim Breed. 2016;59(2):275–83.

Article  Google Scholar 

Andersson M, et al. The hereditary ‘short tail’sperm defect-a new reproductive problem in Yorkshire boars. Reprod Domest Anim. 2000;35(2):59–63.

Article  Google Scholar 

Sironen AI, et al. Mapping of an immotile short tail sperm defect in the Finnish Yorkshire on porcine chromosome 16. Mamm Genome. 2002;13:45–9.

Article  CAS  PubMed  Google Scholar 

Sironen A, et al. Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia. Biol Reprod. 2011;85(4):690–701.

Article  CAS  PubMed  PubMed Ce

Comments (0)

No login
gif