Bai X, Liu X, Wu H, Feng J, Chen H, Zhou D (2022) CircFUNDC1 knockdown alleviates oxygen-glucose deprivation-induced human brain microvascular endothelial cell injuries by inhibiting PTEN via miR-375. Neurosci Lett 770:136381
Article CAS PubMed Google Scholar
Banks JL, Marotta CA (2007) Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 38(3):1091–1096
Bao L, Zhong J, Pang L (2019) Upregulation of Circular RNA VPS13C-has-circ-001567 Promotes Ovarian Cancer Cell Proliferation and Invasion. Cancer Biother Radiopharm 34(2):110–118
Brott T, Adams HP Jr, Olinger CP et al (1989) Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20(7):864–870
Article CAS PubMed Google Scholar
Cardenas J, Balaji U, Gu J (2020) Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions. Sci Rep 10(1):22165
Article CAS PubMed PubMed Central Google Scholar
Chen S, Xu Y, Yang B (2023) CircUSP48 promotes malignant behavior by regulating CYR61 via miR-365 in osteosarcoma. Funct Integr Genomics 23(3):270
Article CAS PubMed Google Scholar
Chen Y, Yao L, Tang Y et al (2022) CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers. Nucleic Acids Res 50(D1):D93–D101
Article CAS PubMed Google Scholar
Feigin VL, Roth GA, Naghavi M et al (2016) Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol 15(9):913–924
Ghaedrahmati F, Nasrolahi A, Najafi S et al (2023) Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 25(11):3101–3121
Article CAS PubMed Google Scholar
Ghafouri-Fard S, Najafi S, Hussen BM et al (2022) The Role of Circular RNAs in the Carcinogenesis of Bladder Cancer. Front Oncol 12:801842
Article CAS PubMed PubMed Central Google Scholar
Global Burden of Disease Study C (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995):743–800
Haley MJ, Krishnan S, Burrows D et al (2019) Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. J Cereb Blood Flow Metab 39(6):1026–1037
Article CAS PubMed Google Scholar
Han C, Yang J, Yin T et al (2023) CD63-snorkel tagging for isolation of exosomes. Extracellular Vesicle 2:100031
Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA Biol 14(8):1028–1034
Jia J, Zheng L, Ye L et al (2023) CD11c(+) microglia promote white matter repair after ischemic stroke. Cell Death Dis 14(2):156
Article PubMed PubMed Central Google Scholar
Jin H, Zhu S, Wei JW et al (2012) Factors associated with prehospital delays in the presentation of acute stroke in urban China. Stroke 43(2):362–370
Kasner SE (2006) Clinical interpretation and use of stroke scales. Lancet Neurol 5(7):603–612
Kumar A, Kim S, Su Y et al (2021) Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine 63:103192
Article CAS PubMed PubMed Central Google Scholar
Li H, Wang C, Yu X, Luo Y, Wang H (2023) Measurement of cerebral oxygen extraction fraction using quantitative BOLD approach: a review. Phenomics 3(1):101–118
Article CAS PubMed Google Scholar
Liu Y, Li Y, Zang J et al (2022) CircOGDH Is a Penumbra Biomarker and Therapeutic Target in Acute Ischemic Stroke. Circ Res 130(6):907–924
Article CAS PubMed Google Scholar
Najafi S (2022) Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol 206:939–953
Article CAS PubMed Google Scholar
Najafi S (2023) The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review. J Cancer Res Clin Oncol 149(5):2211–2234
Article CAS PubMed Google Scholar
Najafi S, Majidpoor J, Mortezaee K (2023) Extracellular vesicle-based drug delivery in cancer immunotherapy. Drug Deliv Transl Res 13(11):2790–2806
Article CAS PubMed Google Scholar
Najafi S, Majidpoor J, Mortezaee K (2024) Liquid biopsy in colorectal cancer. Clin Chim Acta 553:117674
Article CAS PubMed Google Scholar
Rahmati Y, Asemani Y, Aghamiri S, Ezzatifar F, Najafi S (2021) CiRS-7/CDR1as; An oncogenic circular RNA as a potential cancer biomarker. Pathol Res Pract 227:153639
Article CAS PubMed Google Scholar
Rezaee D, Saadatpour F, Akbari N et al (2023) The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Res Rev 92:102090
Article CAS PubMed Google Scholar
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140
Article CAS PubMed Google Scholar
Saver JL, Goyal M, van der Lugt A et al (2016) Time to Treatment With Endovascular Thrombectomy and Outcomes From Ischemic Stroke: A Meta-analysis. JAMA 316(12):1279–1288
Sayad A, Najafi S, Kashi AH et al (2022) Circular RNAs in renal cell carcinoma: Functions in tumorigenesis and diagnostic and prognostic potentials. Pathol Res Pract 229:153720
Article CAS PubMed Google Scholar
Sayad A, Najafi S, Hussen BM, Jamali E, Taheri M, Ghafouri-Fard S (2022) The role of circular RNAs in pancreatic cancer: new players in tumorigenesis and potential biomarkers. Pathol Res Pract 232:153833
Article CAS PubMed Google Scholar
Taheri M, Najafi S, Basiri A et al (2021) The Role and Clinical Potentials of Circular RNAs in Prostate Cancer. Front Oncol 11:781414
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Liu J, Ma J et al (2019) Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer 18(1):116
Article PubMed PubMed Central Google Scholar
Wang F, Liu J, Wang D, Yao Y, Jiao X (2022) Knockdown of circ_0007290 alleviates oxygen-glucose deprivation-induced neuronal injury by regulating miR-496/PDCD4 axis. Metab Brain Dis 37(3):807–818
Comments (0)