Phytochemical Small Molecules as Potential Anti-angiogenesis Targeted Therapy for Triple-Negative Breast Cancer

Abd Razak N, Yeap SK, Alitheen NB, Ho WY, Yong CY, Tan SW, Long K (2020) Eupatorin suppressed tumor progression and enhanced immunity in a 4T1 murine breast cancer model. ICT 19:1534735420935625. https://doi.org/10.1177/1534735420935625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdalla A, Murali C, Amin A (2022) Safranal inhibits angiogenesis via targeting HIF-1a/VEGF machinery : in vitro and ex vivo insights. Front Oncol 11:789172. https://doi.org/10.3389/fonc.2021.789172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad B, Rehman SU, Azizullah A, Khan MF, Syed RUD, Ahmad M, Ali A, Tahir N, Azman N, Gamallat Y, Rahman KU, Ali M, Safi M, Khan I, Samina Q, Oh DH (2021) Molecular mechanisms of anticancer activities of polyphyllin VII. Chem Biol Drug Des 97:914–929. https://doi.org/10.1111/cbdd.13818

Article  CAS  PubMed  Google Scholar 

Avci CB, Susluer SY, Caglar HO, Balci T (2015) Genistein-induced mir-23b expression inhibits the growth of breast cancer cells. Contemp Oncol 19:32–35. https://doi.org/10.5114/wo.2014.44121

Article  Google Scholar 

Aventurado CA, Billones JB, Vasquez RD, Castillo AL (2020) In ovo and in silico evaluation of the anti-angiogenic potential of syringin. Drug Des Devel Ther 14:5189–5204. https://doi.org/10.2147/DDDT.S271952

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahramrezaie M, Amidi F, Aleyasin A, Saremi AT, Aghahoseini M, Brenjian S, Khodarahmian M, Pooladi A (2019) Effects of resveratrol on VEGF & HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: a triple-blind randomized clinical trial. J Assist Reprod Genet 36:1701–1712. https://doi.org/10.1007/s10815-019-01461-6

Article  PubMed  PubMed Central  Google Scholar 

Basak S, Srinivas V, Mallepogu A, Duttaroy AK (2020) Curcumin stimulates angiogenesis through VEGF and expression of HLA-G in first-trimester human placental trophoblasts. Cell Biol Int 44:1237–1251. https://doi.org/10.1002/cbin.11324

Article  CAS  PubMed  Google Scholar 

Bhagwat AS, Vakoc CR (2015) Targeting transcription factors in cancer. Trends Cancer 1:53–65. https://doi.org/10.1016/j.trecan.2015.07.001

Article  PubMed  PubMed Central  Google Scholar 

Bhattacharya S, Ghosh A, Maiti S, Ahir M, Debnath GH, Gupta P, Bhattacharjee M, Ghosh S, Chattopadhyay S, Mukherjee P, Adhikary A (2020) Delivery of thymoquinone through hyaluronic acid-decorated mixed pluronic nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. JCR 322:357–374. https://doi.org/10.1016/j.jconrel.2020.03.033

Article  CAS  Google Scholar 

Bushweller JH (2019) Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer 19:611–624. https://doi.org/10.1038/s41568-019-0196-7

Cetinkaya M, Baran Y (2023) Therapeutic potential of luteolin on cancer. Vaccines 11:554. https://doi.org/10.3390/vaccines11030554

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Wang J, Lin L, He L, Wu Y, Zhang L, Yi Z, Chen Y, Pang X, Liu M (2012) Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther 11:277–287. https://doi.org/10.1158/1535-7163.MCT-11-0648

Article  CAS  PubMed  Google Scholar 

Cryan LM, Bazinet L, Habeshian KA, Cao S, Clardy J, Christensen KA, Rogers MS (2013) 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) inhibits angiogenesis via inhibition of CMG2. J Med Chem 56:1940–1945. https://doi.org/10.1021/jm301558t

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui Y, Wu L, Cao R, Xu H, Xia J, Wang ZP, Ma J (2020) Antitumor functions and mechanisms of nitidine chloride in human cancers. J Cancer 11:1250–1256. https://doi.org/10.7150/jca.37890

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai F, Chen Y, Song Y, Huang L, Zhai D, Dong Y, Lai L, Zhang T, Li D, Pang X, Liu M, Yi Z (2012) A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PLoS One 7:e52162. https://doi.org/10.1371/journal.pone.0052162

Dai X, Yin C, Zhang Y, Guo G, Zhao C, Wang O (2018) Osthole inhibits triple-negative breast cancer cells by suppressing STAT3. J Exp Clin Cancer Res 37:322. https://doi.org/10.1186/s13046-018-0992-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Ahmedin J, Siegel RL (2019) Breast cancer statistics, 2019. CA: Cancer J Clin 69:438–451. https://doi.org/10.3322/caac.21583

Article  PubMed  Google Scholar 

Dey G, Bharti R, Ojha PK, Pal I, Rajesh Y, Banerjee I, Banik P, Parida S, Aditya Parekh A, Sen R, Mandal M (2017) Therapeutic implication of ‘Iturin A’ for targeting MD-2/TLR4 complex to overcome angiogenesis and invasion. Cell Signal 35:24–36. https://doi.org/10.1016/j.cellsig.2017.03.017

Article  CAS  PubMed  Google Scholar 

Domingo DS, Camouse MM, Hsia AH, Matsui M, Maes D, Nicole L, Cooper KD, Baron ED (2010) Anti-angiogenic effects of epigallocatechin-3-gallate in human skin. Int J Clin Exp Pathol 3:705–709

CAS  PubMed  PubMed Central  Google Scholar 

El-Dana F, Yuan B, Ly S, Anand V, Battula VL (2021) Hotspot p53 mutations correlate with increased expression of stem cell markers in triple-negative breast cancer. Cancer Res 2021:81. https://doi.org/10.1158/1538-7445.sabcs20-ps16-19

Article  Google Scholar 

Fırat F, Özgül M, Türköz Uluer E, Inan S (2019) Effects of caffeic acid phenethyl ester (CAPE) on angiogenesis, apoptosis and oxidatıve stress ın various cancer cell lines. Biotech Histochem 94:491–497. https://doi.org/10.1080/10520295.2019.1589574

Article  CAS  PubMed  Google Scholar 

Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, Ferns G, Reza Parizadeh SM, Ghayour-Mobarhan M (2014) Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. Sci World J 11:898361. https://doi.org/10.1155/2014/898361

Article  CAS  Google Scholar 

Gao Y, Zhao K, Huang Y, Zhou Y, Li Z, Guo R, Wu Y, Lu N (2014) LL202 inhibits lipopolysaccharide-induced angiogenesis in vivo and in vitro. RSC Adv 4:64565–64576. https://doi.org/10.1039/c4ra08691k

Article  CAS  Google Scholar 

Garc-Quiroz J, Santos-Cuevas C, Ram GJ, Morales-guadarrama G, Nohem C, Segovia-Mendoza M, Prado-Garcia H, Ordaz-Rosado D, Avila E, Olmos-Ortiz A (2019) Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple-negative breast xenografts. Cancer 11:2–22. https://doi.org/10.3390/cancers11111739

Article  CAS  Google Scholar 

Gardner V, Madu CO, Lu Y (2017) Anti-VEGF therapy in cancer: a double-edged sword. In Intech. https://doi.org/10.5772/66763

Article  Google Scholar 

Gee JR, Saltzstein DR, Kim KM, Kolesar J, Huang W, Havighurst TC, Wolmer BW, Stubiaski J, Downs T, Mukhtar H, House MG, Parnes HL, Bailey HH (2017) A phase II randomized, double-blind, presurgical trial of Polyphenon E in bladder cancer patients to evaluate pharmacodynamics and bladder tissue biomarkers. Physiol Behav 176:139–148. https://doi.org/10.1158/1940-6207.CAPR-16-0167

Article  CAS  Google Scholar 

Gong G, Zheng Y, Kong X, Wen Z (2021) Anti-angiogenesis function of ononin via suppressing the MEK/Erk signaling pathway. J Nat Prod 84:1755–1762. https://doi.org/10.1021/acs.jnatprod.1c00008

Article  CAS  PubMed  Google Scholar 

Gu J, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, Miele L (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NF κB and VEGF expression. Vascular Cell 5:9. https://doi.org/10.1186/2045-824X-5-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hailat MM, Ebrahim HY, Mohyeldin MM, Goda AA, Siddique AB, El Sayed KA (2017) The tobacco cembranoid (1S,2E,4S,7E,11E)-2,7,11-cembratriene-4,6-diol as a novel angiogenesis inhibitory lead for the control of breast malignancies. Bioorg Med Chem 25:3911–3921. https://doi.org/10.1016/j.bmc.2017.05.028

Article  CAS 

Comments (0)

No login
gif