Abd Razak N, Yeap SK, Alitheen NB, Ho WY, Yong CY, Tan SW, Long K (2020) Eupatorin suppressed tumor progression and enhanced immunity in a 4T1 murine breast cancer model. ICT 19:1534735420935625. https://doi.org/10.1177/1534735420935625
Article CAS PubMed PubMed Central Google Scholar
Abdalla A, Murali C, Amin A (2022) Safranal inhibits angiogenesis via targeting HIF-1a/VEGF machinery : in vitro and ex vivo insights. Front Oncol 11:789172. https://doi.org/10.3389/fonc.2021.789172
Article CAS PubMed PubMed Central Google Scholar
Ahmad B, Rehman SU, Azizullah A, Khan MF, Syed RUD, Ahmad M, Ali A, Tahir N, Azman N, Gamallat Y, Rahman KU, Ali M, Safi M, Khan I, Samina Q, Oh DH (2021) Molecular mechanisms of anticancer activities of polyphyllin VII. Chem Biol Drug Des 97:914–929. https://doi.org/10.1111/cbdd.13818
Article CAS PubMed Google Scholar
Avci CB, Susluer SY, Caglar HO, Balci T (2015) Genistein-induced mir-23b expression inhibits the growth of breast cancer cells. Contemp Oncol 19:32–35. https://doi.org/10.5114/wo.2014.44121
Aventurado CA, Billones JB, Vasquez RD, Castillo AL (2020) In ovo and in silico evaluation of the anti-angiogenic potential of syringin. Drug Des Devel Ther 14:5189–5204. https://doi.org/10.2147/DDDT.S271952
Article CAS PubMed PubMed Central Google Scholar
Bahramrezaie M, Amidi F, Aleyasin A, Saremi AT, Aghahoseini M, Brenjian S, Khodarahmian M, Pooladi A (2019) Effects of resveratrol on VEGF & HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: a triple-blind randomized clinical trial. J Assist Reprod Genet 36:1701–1712. https://doi.org/10.1007/s10815-019-01461-6
Article PubMed PubMed Central Google Scholar
Basak S, Srinivas V, Mallepogu A, Duttaroy AK (2020) Curcumin stimulates angiogenesis through VEGF and expression of HLA-G in first-trimester human placental trophoblasts. Cell Biol Int 44:1237–1251. https://doi.org/10.1002/cbin.11324
Article CAS PubMed Google Scholar
Bhagwat AS, Vakoc CR (2015) Targeting transcription factors in cancer. Trends Cancer 1:53–65. https://doi.org/10.1016/j.trecan.2015.07.001
Article PubMed PubMed Central Google Scholar
Bhattacharya S, Ghosh A, Maiti S, Ahir M, Debnath GH, Gupta P, Bhattacharjee M, Ghosh S, Chattopadhyay S, Mukherjee P, Adhikary A (2020) Delivery of thymoquinone through hyaluronic acid-decorated mixed pluronic nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. JCR 322:357–374. https://doi.org/10.1016/j.jconrel.2020.03.033
Bushweller JH (2019) Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer 19:611–624. https://doi.org/10.1038/s41568-019-0196-7
Cetinkaya M, Baran Y (2023) Therapeutic potential of luteolin on cancer. Vaccines 11:554. https://doi.org/10.3390/vaccines11030554
Article CAS PubMed PubMed Central Google Scholar
Chen J, Wang J, Lin L, He L, Wu Y, Zhang L, Yi Z, Chen Y, Pang X, Liu M (2012) Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther 11:277–287. https://doi.org/10.1158/1535-7163.MCT-11-0648
Article CAS PubMed Google Scholar
Cryan LM, Bazinet L, Habeshian KA, Cao S, Clardy J, Christensen KA, Rogers MS (2013) 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) inhibits angiogenesis via inhibition of CMG2. J Med Chem 56:1940–1945. https://doi.org/10.1021/jm301558t
Article CAS PubMed PubMed Central Google Scholar
Cui Y, Wu L, Cao R, Xu H, Xia J, Wang ZP, Ma J (2020) Antitumor functions and mechanisms of nitidine chloride in human cancers. J Cancer 11:1250–1256. https://doi.org/10.7150/jca.37890
Article CAS PubMed PubMed Central Google Scholar
Dai F, Chen Y, Song Y, Huang L, Zhai D, Dong Y, Lai L, Zhang T, Li D, Pang X, Liu M, Yi Z (2012) A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PLoS One 7:e52162. https://doi.org/10.1371/journal.pone.0052162
Dai X, Yin C, Zhang Y, Guo G, Zhao C, Wang O (2018) Osthole inhibits triple-negative breast cancer cells by suppressing STAT3. J Exp Clin Cancer Res 37:322. https://doi.org/10.1186/s13046-018-0992-z
Article CAS PubMed PubMed Central Google Scholar
DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Ahmedin J, Siegel RL (2019) Breast cancer statistics, 2019. CA: Cancer J Clin 69:438–451. https://doi.org/10.3322/caac.21583
Dey G, Bharti R, Ojha PK, Pal I, Rajesh Y, Banerjee I, Banik P, Parida S, Aditya Parekh A, Sen R, Mandal M (2017) Therapeutic implication of ‘Iturin A’ for targeting MD-2/TLR4 complex to overcome angiogenesis and invasion. Cell Signal 35:24–36. https://doi.org/10.1016/j.cellsig.2017.03.017
Article CAS PubMed Google Scholar
Domingo DS, Camouse MM, Hsia AH, Matsui M, Maes D, Nicole L, Cooper KD, Baron ED (2010) Anti-angiogenic effects of epigallocatechin-3-gallate in human skin. Int J Clin Exp Pathol 3:705–709
CAS PubMed PubMed Central Google Scholar
El-Dana F, Yuan B, Ly S, Anand V, Battula VL (2021) Hotspot p53 mutations correlate with increased expression of stem cell markers in triple-negative breast cancer. Cancer Res 2021:81. https://doi.org/10.1158/1538-7445.sabcs20-ps16-19
Fırat F, Özgül M, Türköz Uluer E, Inan S (2019) Effects of caffeic acid phenethyl ester (CAPE) on angiogenesis, apoptosis and oxidatıve stress ın various cancer cell lines. Biotech Histochem 94:491–497. https://doi.org/10.1080/10520295.2019.1589574
Article CAS PubMed Google Scholar
Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, Ferns G, Reza Parizadeh SM, Ghayour-Mobarhan M (2014) Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. Sci World J 11:898361. https://doi.org/10.1155/2014/898361
Gao Y, Zhao K, Huang Y, Zhou Y, Li Z, Guo R, Wu Y, Lu N (2014) LL202 inhibits lipopolysaccharide-induced angiogenesis in vivo and in vitro. RSC Adv 4:64565–64576. https://doi.org/10.1039/c4ra08691k
Garc-Quiroz J, Santos-Cuevas C, Ram GJ, Morales-guadarrama G, Nohem C, Segovia-Mendoza M, Prado-Garcia H, Ordaz-Rosado D, Avila E, Olmos-Ortiz A (2019) Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple-negative breast xenografts. Cancer 11:2–22. https://doi.org/10.3390/cancers11111739
Gardner V, Madu CO, Lu Y (2017) Anti-VEGF therapy in cancer: a double-edged sword. In Intech. https://doi.org/10.5772/66763
Gee JR, Saltzstein DR, Kim KM, Kolesar J, Huang W, Havighurst TC, Wolmer BW, Stubiaski J, Downs T, Mukhtar H, House MG, Parnes HL, Bailey HH (2017) A phase II randomized, double-blind, presurgical trial of Polyphenon E in bladder cancer patients to evaluate pharmacodynamics and bladder tissue biomarkers. Physiol Behav 176:139–148. https://doi.org/10.1158/1940-6207.CAPR-16-0167
Gong G, Zheng Y, Kong X, Wen Z (2021) Anti-angiogenesis function of ononin via suppressing the MEK/Erk signaling pathway. J Nat Prod 84:1755–1762. https://doi.org/10.1021/acs.jnatprod.1c00008
Article CAS PubMed Google Scholar
Gu J, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, Miele L (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NF κB and VEGF expression. Vascular Cell 5:9. https://doi.org/10.1186/2045-824X-5-9
Article CAS PubMed PubMed Central Google Scholar
Hailat MM, Ebrahim HY, Mohyeldin MM, Goda AA, Siddique AB, El Sayed KA (2017) The tobacco cembranoid (1S,2E,4S,7E,11E)-2,7,11-cembratriene-4,6-diol as a novel angiogenesis inhibitory lead for the control of breast malignancies. Bioorg Med Chem 25:3911–3921. https://doi.org/10.1016/j.bmc.2017.05.028
Comments (0)