Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018;14:590–605.
Article PubMed PubMed Central Google Scholar
Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Prim. 2019;5:25.
Wallenius J, Kafantari E, Jhaveri E, Englund E, Ehrencrona H, Puschmann A. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: a poly-glycine disease. Am J Hum Genet. 2024;111:82–95.
Article CAS PubMed Google Scholar
Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89:121–30.
Article CAS PubMed PubMed Central Google Scholar
Zhao S, Zhang D, Liu S, Huang J. The roles of NOP56 in cancer and SCA36. Pathol Oncol Res. 2023;29:1610884.
Article CAS PubMed PubMed Central Google Scholar
Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N, et al. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. J Neurol Neurosurg Psychiatry. 2015;86:986–95.
Valera JM, Diaz T, Petty LE, Quintáns B, Yáñez Z, Boerwinkle E, et al. Prevalence of spinocerebellar ataxia 36 in a US population. Neurol Genet. 2017;3:e174.
Article CAS PubMed PubMed Central Google Scholar
Lee YC, Tsai PC, Guo YC, Hsiao CT, Liu GT, Liao YC, et al. Spinocerebellar ataxia type 36 in the Han Chinese. Neurol Genet. 2016;2:e68.
Article PubMed PubMed Central Google Scholar
Liu W, Ikeda Y, Hishikawa N, Yamashita T, Deguchi K, Abe K. Characteristic RNA foci of the abnormal hexanucleotide GGCCUG repeat expansion in spinocerebellar ataxia type 36 (Asidan). Eur J Neurol. 2014;21:1377–86.
Article CAS PubMed Google Scholar
Lopez S, He F. Spinocerebellar ataxia 36: from mutations toward therapies. Front Genet. 2022;13:837690.
Article CAS PubMed PubMed Central Google Scholar
Zeng S, Zeng J, He M, Zeng X, Zhou Y, Liu Z, et al. Genetic and clinical analysis of spinocerebellar ataxia type 36 in Mainland China. Clin Genet. 2016;90:141–8.
Article CAS PubMed Google Scholar
García-Murias M, Quintáns B, Arias M, Seixas AI, Cacheiro P, Tarrío R, et al. ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain. 2012;135:1423–35.
Article PubMed PubMed Central Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article CAS PubMed Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article PubMed PubMed Central Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.
Article CAS PubMed PubMed Central Google Scholar
Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–9.
Article CAS PubMed Google Scholar
Matsuzono K, Imamura K, Murakami N, Tsukita K, Yamamoto T, Izumi Y, et al. Antisense oligonucleotides reduce RNA foci in spinocerebellar ataxia 36 patient iPSCs. Mol Ther Nucleic Acids. 2017;8:211–9.
Article CAS PubMed PubMed Central Google Scholar
Gautier T, Bergès T, Tollervey D, Hurt E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol. 1997;17:7088–98.
Article CAS PubMed PubMed Central Google Scholar
Hayano T, Yanagida M, Yamauchi Y, Shinkawa T, Isobe T, Takahashi N. Proteomic analysis of human Nop56p-associated pre-ribosomal ribonucleoprotein complexes. Possible link between Nop56p and the nucleolar protein treacle responsible for Treacher Collins syndrome. J Biol Chem. 2003;278:34309–19.
Article CAS PubMed Google Scholar
Quelle-Regaldie A, Folgueira M, Yáñez J, Sobrido-Cameán D, Alba-González A, Barreiro-Iglesias A, et al. A nop56 zebrafish loss-of-function model exhibits a severe neurodegenerative phenotype. Biomedicines. 2022;10:1814.
Article CAS PubMed PubMed Central Google Scholar
Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, et al. Clinical features of sca36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology. 2012;79:333–41.
Article CAS PubMed Google Scholar
Sun C, Schuman EM. Logistics of neuronal protein turnover: numbers and mechanisms. Mol Cell Neurosci. 2022;123:103793.
Article CAS PubMed Google Scholar
Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Vancura A, et al. Transcription factors interact with RNA to regulate genes. Mol Cell. 2023;83:2449–63.e13
Article CAS PubMed Google Scholar
Zhang N, Ashizawa T. RNA toxicity and foci formation in microsatellite expansion diseases. Curr Opin Genet Dev. 2017;44:17–29.
Article CAS PubMed PubMed Central Google Scholar
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron. 2019;102:294–320.
Article CAS PubMed PubMed Central Google Scholar
Querido E, Gallardo F, Beaudoin M, Ménard C, Chartrand P. Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J Cell Sci. 2011;124:1703–14.
Article CAS PubMed Google Scholar
Furuta N, Tsukagoshi S, Hirayanagi K, Ikeda Y. Suppression of the yeast elongation factor Spt4 ortholog reduces expanded SCA36 GGCCUG repeat aggregation and cytotoxicity. Brain Res. 2019;1711:29–40.
Article CAS PubMed Google Scholar
Todd TW, McEachin ZT, Chew J, Burch AR, Jansen-West K, Tong J, et al. Hexanucleotide repeat expansions in c9FTD/ALS and SCA36 confer selective patterns of neurodegeneration in vivo. Cell Rep. 2020;31:107616.
Comments (0)