Cost-Effectiveness of Routine Monitoring of Long-Term Conditions in Primary Care: Informing Decision Modelling with a Systematic Review in Hypertension, Type 2 Diabetes and Chronic Kidney Disease

NHS England blog post: NHS England. https://www.england.nhs.uk/blog/making-the-case-for-the-personalised-approach/. Accessed 16 Feb 2024.

Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380:37–43.

Article  PubMed  Google Scholar 

NHS Digital. Quality and Outcomes Framework (QOF) - 2018-19. https://digital.nhs.uk/data-and-information/ publications/statistical/quality-and-outcomes-framework-achievement-prevalence-and-exceptions-data/. Accessed 15 Feb 2024.

NICE CKS: NICE Clinical Knowledge Summaries. Diabetes - type 2. https://cks.nice.org.uk/topics/diabetes-type-2/background-information/prevalence/. Accessed 15 Feb 2024

Goodwin N, Curry N, Naylor C, Ross S, Duldig W. Managing people with long-term conditions. 2010. https://archive.kingsfund.org.uk/concern/published_works/000095975. Accessed 15 Feb 2024.

Perera R, Stevens R, Aronson JK, Banerjee A, Evans J, Feakins BG, et al. Long-term monitoring in primary care for chronic kidney disease and chronic heart failure: a multi-method research programme. Programme Grants for Appl Res. 2021;9:1–218.

Article  Google Scholar 

Cassell A, Edwards D, Harshfield A, Rhodes K, Brimicombe J, Payne R, et al. The epidemiology of multimorbidity in primary care: a retrospective cohort study. Br J Gen Pract. 2018;68(669):e245–51.

Article  PubMed  PubMed Central  Google Scholar 

Elwenspoek MMC, Patel R, Watson JC, Whiting P. Are guidelines for monitoring chronic disease in primary care evidence based? BMJ. 2019;365: l2319.

Article  PubMed  Google Scholar 

Legido-Quigley H, Panteli D, Car J, McKee M, Busse R, World Health Organization. Clinical guidelines for chronic conditions in the European Union. World Health Organization, Regional Office for Europe; 2013. Available at: https://eurohealthobservatory.who.int/publications/i/clinical-guidelines-for-chronic-conditions-in-the-european-union-study. Accessed 15 Feb 2024.

National Institute for Health and Care Excellence (NICE). NICE guideline [NG28]: Type 2 diabetes in adults: management. 2015. https://www.nice.org.uk/guidance/ng28. Accessed 15 Feb 2024.

National Institute for Health and Care Excellence (NICE). NICE guideline [NG203]: Chronic kidney disease: assessment and management. https://www.nice.org.uk/guidance/ng203. Accessed 15 Feb 2024.

National Institute for Health and Care Excellence (NICE). NICE guideline [NG136]: Hypertension in adults: diagnosis and management. 2021. https://www.nice.org.uk/guidance/ng136. Accessed 15 Feb 2024.

Glasziou PP, Irwig L, Heritier S, Simes RJ, Tonkin A, Lipid Study Investigators. Monitoring cholesterol levels: measurement error or true change? Ann Intern Med. 2008;148:656–61.

Article  PubMed  Google Scholar 

O’Sullivan JW, Stevens S, Hobbs FR, Salisbury C, Little P, Goldacre B, et al. Temporal trends in use of tests in UK primary care, 2000–15: retrospective analysis of 250 million tests. BMJ. 2018;363:k4666.

Article  PubMed  PubMed Central  Google Scholar 

NHS England. The 2nd Atlas of Variation in NHS Diagnostic Services in England. 2017. Available at: file:///C:/Users/sm14392/Downloads/DiagnosticAtlas_FINAL.pdf.

Busby J, Schroeder K, Woltersdorf W, Sterne JA, Ben-Shlomo Y, Hay A, et al. Temporal growth and geographic variation in the use of laboratory tests by NHS general practices: using routine data to identify research priorities. Br J Gen Pract. 2013;63:e256–66.

Article  PubMed  PubMed Central  Google Scholar 

NICE. Developing NICE guidelines: the manual. Process and methods; PMG20, 2022. https://www.nice.org.uk/process/pmg20/chapter/incorporating-economic-evaluation#prioritising-questions-for-further-economic-analysis. Accessed 17 Nov 2022.

NIHR. Developing evidence based optimal testing strategies to monitor long term conditions in primary care. Funding and Awards; NIHR201616. 2021. https://fundingawards.nihr.ac.uk/award/NIHR201616. Accessed 16 Nov 2022.

Elwenspoek MMC, Mann E, Alsop K, Clark H, Patel R, Watson JC, et al. GP’s perspectives on laboratory test use for monitoring long-term conditions: an audit of current testing practice. BMC Fam Pract. 2020;21:257.

Article  PubMed  PubMed Central  Google Scholar 

Mandrik OL, Severens JLH, Bardach A, Ghabri S, Hamel C, Mathes T, et al. Critical appraisal of systematic reviews with costs and cost-effectiveness outcomes: an ISPOR Good Practices Task Force Report. Value Health. 2021;24:463–72.

Article  PubMed  Google Scholar 

Sun X, Faunce T. Decision-analytical modelling in health-care economic evaluations. Eur J Health Econ. 2008;9:313–23.

Article  PubMed  Google Scholar 

Charokopou M, Sabater FJ, Townsend R, Roudaut M, McEwan P, Verheggen BG. Methods applied in cost-effectiveness models for treatment strategies in type 2 diabetes mellitus and their use in Health Technology Assessments: a systematic review of the literature from 2008 to 2013. Curr Med Res Opin. 2016;32:207–18.

Article  CAS  PubMed  Google Scholar 

Cost effectiveness analysis of improved blood pressure control in hypertensive patients with type 2 diabetes: UKPDS 40. UK Prospective Diabetes Study Group. BMJ. 1998;317:720–6.

Peñaloza-Ramos MC, Jowett S, Sutton AJ, McManus RJ, Barton P. The importance of model structure in the cost-effectiveness analysis of primary care interventions for the management of hypertension. Value Health. 2018;21:351–63.

Article  PubMed  Google Scholar 

McLaughlin VV, Benza RL, Rubin LJ, Channick RN, Voswinckel R, Tapson VF, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2010;55:1915–22.

Article  CAS  PubMed  Google Scholar 

Sugrue DM, Ward T, Rai S, McEwan P, van Haalen HGM. Economic modelling of chronic kidney disease: a systematic literature review to inform conceptual model design. Pharmacoeconomics. 2019;37:1451–68.

Article  PubMed  PubMed Central  Google Scholar 

Brennan A, Chick SE, Davies R. A taxonomy of model structures for economic evaluation of health technologies. Health Econ. 2006;15:1295–310.

Article  PubMed  Google Scholar 

Degeling K, Franken MD, May AM, van Oijen MGH, Koopman M, Punt CJA, et al. Matching the model with the evidence: comparing discrete event simulation and state-transition modeling for time-to-event predictions in a cost-effectiveness analysis of treatment in metastatic colorectal cancer patients. Cancer Epidemiol. 2018;57:60–7.

Article  PubMed  Google Scholar 

Thom H, Jackson C, Welton N, Sharples L. Using parameter constraints to choose state structures in cost-effectiveness modelling. Pharmacoeconomics. 2017;35(9):951–62.

Article  PubMed  PubMed Central  Google Scholar 

Mohiuddin S. A systematic and critical review of model-based economic evaluations of pharmacotherapeutics in patients with bipolar disorder. Appl Health Econ Health Policy. 2014;12:359–72.

Article  PubMed  Google Scholar 

Page MJ, Moher D, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372: n160.

Article  PubMed  PubMed Central  Google Scholar 

Glanville J, Kaunelis D, Mensinkai S. How well do search filters perform in identifying economic evaluations in MEDLINE and EMBASE. Int J Technol Assess Health Care. 2009;25:522–9.

Article  PubMed  Google Scholar 

Arber M, Glanville J, Isojarvi J, Baragula E, Edwards M, Shaw A, et al. Which databases should be used to identify studies for systematic reviews of economic evaluations? Int J Technol Assess Health Care. 2018;34:547–54.

Article  PubMed  Google Scholar 

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.

Article  PubMed  PubMed Central  Google Scholar 

Microsoft Corporation. Microsoft Excel. 2018. https://office.microsoft.com/excel. Accessed 15 Feb 2024.

Philips Z, Ginnelly L, Sculpher M, Claxton K, Golder S, Riemsma R, et al. Review of guidelines for good practice in decision-analytic modelling in health technology assessment. Health Technol Assess. 2004;8:iii–iv (ix-xi, 1-158).

Article  CAS  PubMed  Google Scholar 

Auguste P, Tsertsvadze A, Pink J, Court R, Seedat F, Gurung T, et al. Accurate diagnosis of latent tuberculosis in children, people who are immunocompromised or at risk from immunosuppression and recent arrivals from countries with a high incidence of tuberculosis: systematic review and economic evaluation. Health Technol Assess. 2016;20:1–678.

Article  PubMed  PubMed Central  Google Scholar 

Chung O, Vongpatanasin W, Bonaventura K, Lotan Y, Sohns C, Haverkamp W, et al. Potential cost-effectiveness of therapeutic drug monitoring in patients with resistant hypertension. J Hypertens. 2014;32:2411–21 (discussion 2421).

Article  CAS  PubMed  Google Scholar 

Farmer AJ, Stevens R, Hirst J, Lung T, Oke J, Clarke P, et al. Optimal strategies for identifying kidney disease in diabetes: properties of screening tests, progression of renal dysfunction and impact of treatment - systematic review and modelling of progression and cost-effectiveness. Health Technol Assess. 2014;18:1–128.

Article  PubMed  PubMed Central  Google Scholar 

Kessler R, Keusch G, Szucs TD, Wittenborn JS, Hoerger TJ, Brugger U, et al. Health economic modelling of the cost-effectiveness of microalbuminuria screening in Switzerland. Swiss Med Wkly. 2012;142: w13508.

PubMed  Google Scholar 

Rosa LS, Mistro S, Oliveira MG, Kochergin CN, Cortes ML, de Medeiros DS, et al. Cost-effectiveness of point-of-care A1C tests in a primary care setting. Front Pharmacol. 2020;11:588309.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif