Common and specific activations supporting optic flow processing and navigation as revealed by a meta-analysis of neuroimaging studies

Aggius-Vella E, Chebat DR, Maidenbaum S, Amedi A (2023) Activation of human visual area V6 during egocentric navigation with and without visual experience. Curr Biol 33(7):1211–1219. https://doi.org/10.1016/j.cub.2023.02.025

Article  CAS  PubMed  Google Scholar 

Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628. https://doi.org/10.1093/brain/122.9.1613

Article  PubMed  Google Scholar 

Auger SD, Maguire EA (2013) Assessing the mechanism of response in the retrosplenial cortex of good and poor navigators. Cortex 49:2904–2913. https://doi.org/10.1016/j.cortex.2013.08.002

Article  PubMed  PubMed Central  Google Scholar 

Auger SD, Mullally SL, Maguire EA (2012) Retrosplenial cortex codes for permanent landmarks. PLoS One 7:e43620. https://doi.org/10.1371/journal.pone.0043620

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balaguer J, Spiers H, Hassabis D, Summerfield C (2016) Neural mechanisms of hierarchical planning in a virtual subway network. Neuron 90:893–903. https://doi.org/10.1016/j.neuron.2016.03.037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baumann O, Mattingley JB (2010) Medial parietal cortex encodes perceived heading direction in humans. J Neurosci 30:12897–12901. https://doi.org/10.1523/JNEUROSCI.3077-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baumann O, Chan E, Mattingley JB (2010) Dissociable neural circuits for encoding and retrieval of object locations during active navigation in humans. Neuroimage 49:2816–2825. https://doi.org/10.1016/j.neuroimage.2009.10.021

Article  PubMed  Google Scholar 

Baumann O, Chan E, Mattingley JB (2012) Distinct neural networks underlie encoding of categorical versus coordinate spatial relations during active navigation. Neuroimage 60:1630–1637. https://doi.org/10.1016/j.neuroimage.2012.01.089

Article  PubMed  Google Scholar 

Boccia M, Nemmi F, Guariglia C (2014) Neuropsychology of environmental navigation in humans: review and meta-analysis of fMRI studies in healthy participants. Neuropsychol Rev 24(4):236–251. https://doi.org/10.1007/s11065-014-9247-8

Article  PubMed  PubMed Central  Google Scholar 

Boccia M, Piccardi L, Palermo L, Nemmi F, Sulpizio V, Galati G, Guariglia C (2015) A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum Brain Mapp 36:945–958. https://doi.org/10.1002/hbm.22678

Article  PubMed  Google Scholar 

Bonner MF, Epstein RA (2017) Coding of navigational affordances in the human visual system. Proc Natl Acad Sci U S A 114:4793–4798. https://doi.org/10.1073/pnas.1618228114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bremmer F, Kubischik M, Pekel M, Lappe M, Hoffmann KP (1999) Linear vestibular self-motion signals in monkey medial superior temporal area. Ann N Y Acad Sci 871:272–281. https://doi.org/10.1111/j.1749-6632.1999.tb09191.x

Article  CAS  PubMed  Google Scholar 

Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann KP, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex. Neuron 29:287–296. https://doi.org/10.1016/s0896-6273(01)00198-2

Article  CAS  PubMed  Google Scholar 

Brown TI, Stern CE (2014) Contributions of medial temporal lobe and striatal memory systems to learning and retrieving overlapping spatial memories. Cereb Cortex 24:1906–1922. https://doi.org/10.1093/cercor/bht041

Article  PubMed  Google Scholar 

Brown TI, Ross RS, Keller JB, Hasselmo ME, Stern CE (2010) Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. J Neurosci 30:7414–7422. https://doi.org/10.1523/JNEUROSCI.6021-09.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown TI, Ross RS, Tobyne SM, Stern CE (2012) Cooperative inter- actions between hippocampal and striatal systems support flexible navigation. Neuroimage 60:1316–1330. https://doi.org/10.1016/j.neuroimage.2012.01.046

Article  PubMed  Google Scholar 

Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114:340–375. https://doi.org/10.1037/0033-295x.114.2.340

Article  PubMed  PubMed Central  Google Scholar 

Campos JL, Butler JS, Bülthoff HH (2012) Multisensory integration in the estimation of walked distances. Exp Brain Res 218:551–565. https://doi.org/10.1007/s00221-012-3048-1

Article  PubMed  Google Scholar 

Cardelli L, Tullo MG, Galati G, Sulpizio V (2023) Effect of optic flow on spatial updating: insight from an immersive virtual reality study. Exp Brain Res 241(3):865–874. https://doi.org/10.1007/s00221-023-06567-z

Article  PubMed  Google Scholar 

Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebr Cortex 20:1964–1973

Article  Google Scholar 

Cardin V, Smith AT (2011) Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J Neurophysiol 106:1240–1249. https://doi.org/10.1152/jn.01120.2010

Article  PubMed  PubMed Central  Google Scholar 

Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object- and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535. https://doi.org/10.1162/0898929042568550

Article  PubMed  Google Scholar 

Cona G, Scarpazza C (2019) Where is the “where” in the brain? A meta-analysis of neuroimaging studies on spatial cognition. Hum Brain Mapp 40(6):1867–1886. https://doi.org/10.1002/hbm.24496

Article  PubMed  PubMed Central  Google Scholar 

Cullen KE, Taube JS (2017) Our sense of direction: progress, controversies and challenges. Nat Neurosci 20:1465–1473

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeAngelis GC, Angelaki DE (2012) Visual–vestibular integration for self-motion perception. In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes. CRC Press/Taylor & Francis, Boca Raton, FL

Google Scholar 

Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S (2021a) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92

Article  PubMed  Google Scholar 

Di Marco S, Sulpizio V, Bellagamba M, Fattori P, Galati G, Galletti C, Pitzalis S (2021b) Multisensory integration in cortical regions responding to locomotion-related visual and somato-motor signals. Neuroimage. https://doi.org/10.1016/j.neuroimage.2021.118581

Article  PubMed  Google Scholar 

Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827

Article  CAS  PubMed  Google Scholar 

Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate- based activation likelihood estimation meta-analysis of neuroimaging data: a random- effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. https://doi.org/10.1002/hbm.20718

Article  PubMed  PubMed Central  Google Scholar 

Eickhoff SB, Nichols TE, Laird AR, Hoffstaedter F, Amunts K, Fox PT, Bzdok D, Eickhoff CR (2016) Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 137:70–85. https://doi.org/10.1016/j.neuroimage.2016.04.072

Article  PubMed  Google Scholar 

Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL et al (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188. https://doi.org/10.1038/nature01964

Article  CAS  PubMed  Google Scholar 

Ekstrom AD, Huffman DJ, Starrett M (2017) Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. J Neurophysiol 118(6):3328–3344. https://doi.org/10.1152/jn.00531.2017

Article  PubMed  PubMed Central  Google Scholar 

Ellmore TM, McNaughton BL (2004) Human path integration by optic flow. Spat Cogn Comput 4:255–272

Article  Google Scholar 

Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12:388–396. https://doi.org/10.1016/j.tics.2008.07.004

Article  PubMed  PubMed Central  Google Scholar 

Epstein RA, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693. https://doi.org/10.1093/cercor/bhl079

Article  PubMed  Google Scholar 

Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601. https://doi.org/10.1038/33402

Article  CAS 

Comments (0)

No login
gif