Aggius-Vella E, Chebat DR, Maidenbaum S, Amedi A (2023) Activation of human visual area V6 during egocentric navigation with and without visual experience. Curr Biol 33(7):1211–1219. https://doi.org/10.1016/j.cub.2023.02.025
Article CAS PubMed Google Scholar
Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628. https://doi.org/10.1093/brain/122.9.1613
Auger SD, Maguire EA (2013) Assessing the mechanism of response in the retrosplenial cortex of good and poor navigators. Cortex 49:2904–2913. https://doi.org/10.1016/j.cortex.2013.08.002
Article PubMed PubMed Central Google Scholar
Auger SD, Mullally SL, Maguire EA (2012) Retrosplenial cortex codes for permanent landmarks. PLoS One 7:e43620. https://doi.org/10.1371/journal.pone.0043620
Article CAS PubMed PubMed Central Google Scholar
Balaguer J, Spiers H, Hassabis D, Summerfield C (2016) Neural mechanisms of hierarchical planning in a virtual subway network. Neuron 90:893–903. https://doi.org/10.1016/j.neuron.2016.03.037
Article CAS PubMed PubMed Central Google Scholar
Baumann O, Mattingley JB (2010) Medial parietal cortex encodes perceived heading direction in humans. J Neurosci 30:12897–12901. https://doi.org/10.1523/JNEUROSCI.3077-10.2010
Article CAS PubMed PubMed Central Google Scholar
Baumann O, Chan E, Mattingley JB (2010) Dissociable neural circuits for encoding and retrieval of object locations during active navigation in humans. Neuroimage 49:2816–2825. https://doi.org/10.1016/j.neuroimage.2009.10.021
Baumann O, Chan E, Mattingley JB (2012) Distinct neural networks underlie encoding of categorical versus coordinate spatial relations during active navigation. Neuroimage 60:1630–1637. https://doi.org/10.1016/j.neuroimage.2012.01.089
Boccia M, Nemmi F, Guariglia C (2014) Neuropsychology of environmental navigation in humans: review and meta-analysis of fMRI studies in healthy participants. Neuropsychol Rev 24(4):236–251. https://doi.org/10.1007/s11065-014-9247-8
Article PubMed PubMed Central Google Scholar
Boccia M, Piccardi L, Palermo L, Nemmi F, Sulpizio V, Galati G, Guariglia C (2015) A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum Brain Mapp 36:945–958. https://doi.org/10.1002/hbm.22678
Bonner MF, Epstein RA (2017) Coding of navigational affordances in the human visual system. Proc Natl Acad Sci U S A 114:4793–4798. https://doi.org/10.1073/pnas.1618228114
Article CAS PubMed PubMed Central Google Scholar
Bremmer F, Kubischik M, Pekel M, Lappe M, Hoffmann KP (1999) Linear vestibular self-motion signals in monkey medial superior temporal area. Ann N Y Acad Sci 871:272–281. https://doi.org/10.1111/j.1749-6632.1999.tb09191.x
Article CAS PubMed Google Scholar
Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann KP, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex. Neuron 29:287–296. https://doi.org/10.1016/s0896-6273(01)00198-2
Article CAS PubMed Google Scholar
Brown TI, Stern CE (2014) Contributions of medial temporal lobe and striatal memory systems to learning and retrieving overlapping spatial memories. Cereb Cortex 24:1906–1922. https://doi.org/10.1093/cercor/bht041
Brown TI, Ross RS, Keller JB, Hasselmo ME, Stern CE (2010) Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. J Neurosci 30:7414–7422. https://doi.org/10.1523/JNEUROSCI.6021-09.2010
Article CAS PubMed PubMed Central Google Scholar
Brown TI, Ross RS, Tobyne SM, Stern CE (2012) Cooperative inter- actions between hippocampal and striatal systems support flexible navigation. Neuroimage 60:1316–1330. https://doi.org/10.1016/j.neuroimage.2012.01.046
Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114:340–375. https://doi.org/10.1037/0033-295x.114.2.340
Article PubMed PubMed Central Google Scholar
Campos JL, Butler JS, Bülthoff HH (2012) Multisensory integration in the estimation of walked distances. Exp Brain Res 218:551–565. https://doi.org/10.1007/s00221-012-3048-1
Cardelli L, Tullo MG, Galati G, Sulpizio V (2023) Effect of optic flow on spatial updating: insight from an immersive virtual reality study. Exp Brain Res 241(3):865–874. https://doi.org/10.1007/s00221-023-06567-z
Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebr Cortex 20:1964–1973
Cardin V, Smith AT (2011) Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J Neurophysiol 106:1240–1249. https://doi.org/10.1152/jn.01120.2010
Article PubMed PubMed Central Google Scholar
Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object- and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535. https://doi.org/10.1162/0898929042568550
Cona G, Scarpazza C (2019) Where is the “where” in the brain? A meta-analysis of neuroimaging studies on spatial cognition. Hum Brain Mapp 40(6):1867–1886. https://doi.org/10.1002/hbm.24496
Article PubMed PubMed Central Google Scholar
Cullen KE, Taube JS (2017) Our sense of direction: progress, controversies and challenges. Nat Neurosci 20:1465–1473
Article CAS PubMed PubMed Central Google Scholar
DeAngelis GC, Angelaki DE (2012) Visual–vestibular integration for self-motion perception. In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes. CRC Press/Taylor & Francis, Boca Raton, FL
Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S (2021a) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92
Di Marco S, Sulpizio V, Bellagamba M, Fattori P, Galati G, Galletti C, Pitzalis S (2021b) Multisensory integration in cortical regions responding to locomotion-related visual and somato-motor signals. Neuroimage. https://doi.org/10.1016/j.neuroimage.2021.118581
Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827
Article CAS PubMed Google Scholar
Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate- based activation likelihood estimation meta-analysis of neuroimaging data: a random- effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. https://doi.org/10.1002/hbm.20718
Article PubMed PubMed Central Google Scholar
Eickhoff SB, Nichols TE, Laird AR, Hoffstaedter F, Amunts K, Fox PT, Bzdok D, Eickhoff CR (2016) Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 137:70–85. https://doi.org/10.1016/j.neuroimage.2016.04.072
Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL et al (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188. https://doi.org/10.1038/nature01964
Article CAS PubMed Google Scholar
Ekstrom AD, Huffman DJ, Starrett M (2017) Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. J Neurophysiol 118(6):3328–3344. https://doi.org/10.1152/jn.00531.2017
Article PubMed PubMed Central Google Scholar
Ellmore TM, McNaughton BL (2004) Human path integration by optic flow. Spat Cogn Comput 4:255–272
Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12:388–396. https://doi.org/10.1016/j.tics.2008.07.004
Article PubMed PubMed Central Google Scholar
Epstein RA, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693. https://doi.org/10.1093/cercor/bhl079
Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601. https://doi.org/10.1038/33402
Comments (0)