ZNF692 promotes the migration and response to immunotherapy of clear cell renal cell carcinoma cells by targeting metabolic pathway

Juengel E, Schnalke P, Rutz J, Maxeiner S, Chun FK, Blaheta RA. Antiangiogenic properties of axitinib versus sorafenib following sunitinib resistance in human endothelial cells-a view towards second line renal cell carcinoma treatment. Biomedicines. 2021;11:1630.

Article  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;3:209–49.

Article  Google Scholar 

Linehan WM. Genetic basis of kidney cancer. role of genomics for the development of disease-based therapeutics. Genome Res. 2012;11:2089–100.

Article  Google Scholar 

Shapiro DD, Virumbrales-Muñoz M, Beebe DJ, Abel EJ. Models of renal cell carcinoma used to investigate molecular mechanisms and develop new therapeutics. Front Onco. 2020;112: 871252.

Google Scholar 

Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349: g4797.

Article  PubMed  PubMed Central  Google Scholar 

Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephro. 2021;14:245–61.

Article  Google Scholar 

Laity JH, Lee BM, Wright PE. Zinc finger proteins New insights into structural and functional diversity. Curr Opin Struct Bio. 2001;11:39–46.

Article  CAS  Google Scholar 

Poirier A, Gagné A, Laflamme P, Marcoux M, Orain M, Plante S, Joubert D, Joubert P, Laplante M. ZNF768 expression associates with high proliferative clinicopathological features in lung adenocarcinoma. Cancers. 2021;16:4136.

Article  Google Scholar 

Bhat S, Kabekkodu SP, Adiga D, Fernandes R, Shukla V, Bhandari P, Pandey D, Sharan K, Satyamoorthy K. ZNF471 modulates EMT and functions as methylation regulated tumor suppressor with diagnostic and prognostic significance in cervical cancer. Cell Biol Toxico. 2021;15:731–49.

Article  Google Scholar 

Sun X, Zheng D, Guo W. Comprehensive analysis of a zinc finger protein gene-based signature with regard to prognosis and tumor immune microenvironment in osteosarcoma. Front Genet. 2022;13: 835014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inoue E, Yamauchi J. AMP-activated protein kinase regulates PEPCK gene expression by direct phosphorylation of a novel zinc finger transcription factor. Biochem Biophys Res Commun. 2006;4:793–9.

Article  Google Scholar 

Huang CC, Gadd S, Breslow N, Cutcliffe C, Sredni ST, Helenowski IB, Dome JS, Grundy PE, Green DM, Fritsch MK, Perlman EJ. Predicting relapse in favorable histology Wilms tumor using gene expression analysis: a report from the renal tumor committee of the children’s oncology group. Clin Cancer Res. 2009;5:1770–8.

Article  Google Scholar 

Xu Z, Wang H. Expression of ZNF692 gene in clear cell renal cell carcinoma and its relationship with prognosis. J Diagnost Concept Pract. 2020;3:292–6.

Google Scholar 

Wang H, Zhao J, He H, Xie X, Dai S, Xu D, Huang X. ZNF692 promote proliferation through transcriptional repression of essential genes in clear cell renal carcinoma. Biochem Biophys Res Commun. 2023;3(671):255–62.

Article  Google Scholar 

Zhang Q, Zheng X, Sun Q, Shi R, Wang J, Zhu B, Xu L, Zhang G, Ren B. ZNF692 promotes proliferation and cell mobility in lung adenocarcinoma. Biochem Biophys Res Commun. 2017;4:1189–96.

Article  Google Scholar 

Zhu B, Pan Y, Zheng X, Zhang Q, Wu Y, Luo J, Li Q, Lu E, Xu L, Jin G, Ren B. A clinical, biologic and mechanistic analysis of the role of ZNF692 in cervical cancer. Gynecol Onco. 2019;12:396–407.

Article  Google Scholar 

Cai H, Chen S, Wu Z, Wang F, Tang S, Li D, Wang D, Guo W. Comprehensive analysis of ZNF692 as a potential biomarker associated with immune infiltration in a pan cancer analysis and validation in hepatocellular carcinoma. Aging. 2023;15:13041–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, Varambally S. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;8:649–58.

Article  Google Scholar 

Bartha Á, Győrffy B. TNMplot.com. A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021;5:2622.

Article  Google Scholar 

Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 2018;1:233–44.

Article  Google Scholar 

Bi K, He MX, Bakouny Z, Choueiri TK, Van Allen EM. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cel. 2021;15:649–61.

Article  Google Scholar 

Tang Z, Li C, Kang B, Gao G, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;W1:W98–102.

Article  Google Scholar 

Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;D1:D956–63.

Article  Google Scholar 

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;1:1523.

Article  Google Scholar 

Benstead-Hume G, Wooller SK, Downs JA, Pearl FMG. Defining signatures of arm-wise copy number change and their associated drivers in kidney cancers. Int J Mol Sci. 2019;22:5762.

Article  Google Scholar 

di Meo NA, Lasorsa F, Rutigliano M, Milella M, Ferro M, Battaglia M, Ditonno P, Lucarelli G. The dark side of lipid metabolism in prostate and renal carcinoma: novel insights into molecular diagnostic and biomarker discovery. Expert Rev Mol Diagn. 2023;4:297–313.

Article  Google Scholar 

Lucarelli G, Loizzo D, Franzin R, et al. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn. 2019;5:397–407.

Article  Google Scholar 

di Meo NA, Lasorsa F, Rutigliano M, et al. Renal cell carcinoma as a metabolic disease: an update on main pathways, potential biomarkers, and therapeutic targets. Int J Mol Sci. 2022;22:14360.

Article  Google Scholar 

De Marco S, Torsello B, Minutiello E, et al. The cross-talk between Abl2 tyrosine kinase and TGFβ1 signalling modulates the invasion of clear cell Renal Cell Carcinoma cells. FEBS Lett. 2023;8:1098–113.

Article  Google Scholar 

Bianchi C, Meregalli C, Bombelli S, et al. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget. 2017;69:113502–15.

Article  Google Scholar 

Ragone R, Sallustio F, Piccinonna S, et al. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. Diseases. 2016;1:7.

Article  Google Scholar 

Lucarelli G, Galleggiante V, Rutigliano M, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 2015;15:13371–86.

Article  Google Scholar 

Lucarelli G, Rutigliano M, Sallustio F, et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging. 2018;12:3957–85.

Article  Google Scholar 

Bombelli S, Torsello B, De Marco S, Lucarelli G, Cifola I, Grasselli C, Strada G, Bovo G, Perego RA, Bianchi C. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. Am J Pathol. 2020;11:2317–26.

Article  Google Scholar 

Lucarelli G, Rutigliano M, Loizzo D, et al. MUC1 tissue expression and its soluble form CA15-3 identify a clear cell renal cell carcinoma with distinct metabolic profile and poor clinical outcome. Int J Mol Sci. 2022;22:13968.

Article  Google Scholar 

Netti GS, Lucarelli G, Spadaccino F, et al. PTX3 modulates the immunoflogosis in tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. Aging. 2020;8:7585–602.

Article  Google Scholar 

Lucarelli G, Rutigliano M, Ferro M, et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol Oncol. 2017;7:461 e415-461 e427.

Google Scholar 

Prigent M, Barlat I, Langen H, Dargemont C. IkappaBalpha and IkappaBalpha /NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein 2. J Biol Chem. 2000;275:36441–9.

Article  CAS  PubMed  Google Scholar 

Ashikari D, Takayama K, Tanaka T, Suzuki Y, Obinata D, Fujimura T, Urano T, Takahashi S, Inoue S. Androgen induces G3BP2 and SUMO-mediated p53 nuclear export in prostate cancer. Oncogene. 2017;36:6272–81.

Article  CAS  PubMed  Google Scholar 

Li H, Lin PH, Gupta P, Li X, Zhao SL, Zhou X, Li Z, Wei S, Xu L, Han R, Lu J, Tan T, Yang DH, Chen ZS, Pawlik TM, Merritt RE, Ma J. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer. 2021;20:118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, Jain RK, Garkavtsev I. Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci USA. 2017;114:1033–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang N, Li T, Liu W, Lin J, Zhang K, Li Z, Huang Y, Shi Y, Xu M, Liu X. USP7- and PRMT5-dependent G3BP2 stabilization drives de novo lipogenesis and tumorigenesis of HNSC. Cell Death Dis. 2023;14:182.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamaji T, Sekizuka T, Tachida Y, Sakuma C, Morimoto K, Kuroda M, Hanada K. A CRISPR screen identifies LAPTM4A and TM9SF proteins as glycolipid-regulating factors. iScience. 2019;11:409–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, Lei C, Lu C, Wang J, Gao M, Gao W. LINC01232 exerts oncogenic activities in pancreatic adenocarcinoma via regulation of TM9SF2. Cell Death Dis. 2019;10:698.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif