On growth and scoliosis

Burwell RG, Clark EM, Dangerfield PH, Moulton A (2016) Adolescent idiopathic scoliosis (AIS): a multifactorial cascade concept for pathogenesis and embryonic origin. Scoliosis Spinal Disord 11:1–7. https://doi.org/10.1186/s13013-016-0063-1

Article  Google Scholar 

Pérez-Machado G, Berenguer-Pascual E, Bovea-Marco M et al (2020) From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 140:115563. https://doi.org/10.1016/j.bone.2020.115563

Article  CAS  PubMed  Google Scholar 

Fadzan M, Bettany-Saltikov J (2018) Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop J 11:1466–1489. https://doi.org/10.2174/1874325001711011466

Article  Google Scholar 

Kikanloo SR, Tarpada SP, Cho W (2019) Etiology of adolescent idiopathic scoliosis: a literature review. Asian Spine J 13:519–526. https://doi.org/10.31616/asj.2018.0096

Article  PubMed  PubMed Central  Google Scholar 

Loncar-Dusek M, Pećina M, Prebeg Z (1991) A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Rel Res 270:278–282

Article  Google Scholar 

Yim APY, Yeung HY, Hung VWY et al (2012) Abnormal skeletal growth patterns in adolescent idiopathic scoliosis—a longitudinal study until skeletal maturity. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e31825c036d

Article  PubMed  Google Scholar 

Agabegi SS, Kazemi N, Sturm PF, Mehlman CT (2015) Natural history of adolescent idiopathic scoliosis in skeletally mature patients: a critical review. J Am Acad Orthop Surg 23:714–723. https://doi.org/10.5435/JAAOS-D-14-00037

Article  PubMed  Google Scholar 

Thompson DW (1917) On growth and form. Cambridge University Press, Edinburgh

Book  Google Scholar 

Farnum CE, Lee R, O’Hara K, Urban JPG (2002) Volume increase in growth plate chondrocytes during hypertrophy: the contribution of organic osmolytes. Bone 30:574–581. https://doi.org/10.1016/S8756-3282(01)00710-4

Article  CAS  PubMed  Google Scholar 

Villemure I, Stokes IAF (2009) Growth plate mechanics and mechanobiology: a survey of current understanding. J Biomech 42:1793–1803. https://doi.org/10.1016/j.jbiomech.2009.05.021.Growth

Article  PubMed  PubMed Central  Google Scholar 

Ponrartana S, Fisher CL, Aggabao PC et al (2016) Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis. Pediatr Radiol 46:1424–1429. https://doi.org/10.1007/s00247-016-3633-8

Article  PubMed  Google Scholar 

Brink RC, Schlösser TPC, Colo D et al (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine (Phila Pa 1976) 42:818–822. https://doi.org/10.1097/BRS.0000000000001919

Article  PubMed  Google Scholar 

Meir A, McNally DS, Fairbank JC et al (2008) The internal pressure and stress environment of the scoliotic intervertebral disc—a review. Proc Inst Mech Eng Part H J Eng Med 222:209–219. https://doi.org/10.1243/09544119JEIM303

Article  CAS  Google Scholar 

Guo X, Chau WW, Chan YL, Cheng JCY (2003) Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. J Bone Joint Surg Ser B 85:1026–1031. https://doi.org/10.1302/0301-620X.85B7.14046

Article  CAS  Google Scholar 

Hueter C (1862) Anatomische studien an den extremitätengelenken neugeborener und erwachsener. Arch Pathol Anat Physiol Klin Med 25:572–599. https://doi.org/10.1007/BF01879806

Article  Google Scholar 

Volkmann R (1862) Chirurgische erfahrungeu über knocheuverbiegungen und knochenwachsthum. Arch Pathol Anat Physiol Klin Med 24:512–540

Article  Google Scholar 

Mehlman C, Araghi A, Roy D (1997) Hyphenated history: the Hueter–Volkmann Law. Am J Orthop 26:798–800

CAS  PubMed  Google Scholar 

Somerville EW (1952) Rotational lordosis; the development of single curve. J Bone Joint Surg Br 34b3:421. https://doi.org/10.1302/0301-620x.34b3.421

Article  Google Scholar 

Roaf R (1966) The basic anatomy of scoliosis. J Bone Joint Surg Br 48:786–792. https://doi.org/10.1302/0301-620x.48b4.786

Article  CAS  PubMed  Google Scholar 

Jarvis JG, Ashman RB, Johgnston CE, Herring JA (1988) The posterior tether in scoliosis. Clin Orthop Rel Res 227:126–134

Article  CAS  Google Scholar 

Deacon P, Flood BM, Dickson RA (1984) Idiopathic scoliosis in three dimensions. A radiographic and morphometric analysis. J Bone Joint Surg Ser B 66:509–512. https://doi.org/10.1302/0301-620x.66b4.6746683

Article  CAS  Google Scholar 

Dickson RA, Lawton JO, Archer IA, Butt WP (1984) The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Ser B 66:8–15. https://doi.org/10.1302/0301-620x.66b1.6693483

Article  CAS  Google Scholar 

Crijns TJ, Stadhouder A, Smit TH (2017) Restrained differential growth: the initiating event of adolescent idiopathic scoliosis? Spine (Phila Pa 1976) 42:E726–E732. https://doi.org/10.1097/BRS.0000000000001946

Article  PubMed  Google Scholar 

Millner PA, Dickson RA (1996) Idiopathic scoliosis: biomechanics and biology. Eur Spine J 5:362–373. https://doi.org/10.1007/BF00301963

Article  CAS  PubMed  Google Scholar 

Taylor JR (1975) Growth of human intervertebral discs and vertebral bodies. J Anat 120:49–68

CAS  PubMed  PubMed Central  Google Scholar 

Stücker R (2016) Die wachsende wirbelsäule: normale entwicklung und entwicklungsstörung. Orthopade 45:534–539. https://doi.org/10.1007/s00132-016-3277-2

Article  PubMed  Google Scholar 

De Reuver S, Costa L, Van Rheenen H et al (2022) Disc and vertebral body morphology from birth to adulthood. Spine (Phila Pa 1976) 47:E312–E318. https://doi.org/10.1097/BRS.0000000000004278

Article  PubMed  Google Scholar 

Mao SH, Jiang J, Sun X et al (2011) Timing of menarche in Chinese girls with and without adolescent idiopathic scoliosis: current results and review of the literature. Eur Spine J 20:260–265. https://doi.org/10.1007/s00586-010-1649-6

Article  PubMed  Google Scholar 

Cheung CSK, Lee WTK, Tse YK et al (2003) Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine (Phila Pa 1976) 28:2152–2157. https://doi.org/10.1097/01.BRS.0000084265.15201.D5

Article  Google Scholar 

Bala KA, Bala MM (2023) Pubertal stage-dependent anthropometric variations in Turkish children with adolescent idiopathic scoliosis: an in-depth analysis. Med Sci Monit 29:1–8. https://doi.org/10.12659/msm.940864

Article  Google Scholar 

Chen H, Schlösser TPC, Brink RC et al (2017) The height-width-depth ratios of the intervertebral discs and vertebral bodies in adolescent idiopathic scoliosis vs controls in a Chinese population. Sci Rep 7:1–7. https://doi.org/10.1038/srep46448

Article  CAS  Google Scholar 

Emanuel KS, Peeters M, Holewijn RM et al (2015) Poroelastic behaviour of the degenerating human intervertebral disc: a ten-day study in a loaded disc culture system. Eur Cells Mater 29:330–341

Article  CAS  Google Scholar 

Urban JPG, McMullin JF (1985) Swelling pressure of the intervertebral disc: influence of proteoglycan and collagen contents. Biorheology 22:145–157

Article  CAS  PubMed  Google Scholar 

Emanuel KS, van der Veen AJ, Rustenburg CME et al (2018) Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: a caprine in vitro study. J Biomech 70:10–15. https://doi.org/10.1016/j.jbiomech.2017.10.010

Article  PubMed  Google Scholar 

Vergroesen PPA, Van Der Veen AJ, Van Royen BJ et al (2014) Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 23:2359–2368. https://doi.org/10.1007/s00586-014-3450-4

Article  PubMed  Google Scholar 

Meir AR, Fairbank JCT, Jones DA et al (2007) High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis 2:1–16. https://doi.org/10.1186/1748-7161-2-4

Article  Google Scholar 

Tanaka A (1986) A histopathological study on the intervertebral discs of idiopathic and paralytic scoliosis—abnormalities in transition from the notochordal nucleus to the fibrocartilaginous nucleus. Nihon Seikeigeka Gakkai Zasshi 60:1227–1238

CAS  PubMed  Google Scholar 

Wang Y, Bai B, Hu Y et al (2021) Hydrostatic pressure modulates intervertebral disc cell survival and extracellular matrix homeostasis via regulating Hippo-YAP/TAZ Pathway. Stem Cells Int. https://doi.org/10.1155/2021/5626487

Article  PubMed  PubMed Central  Google Scholar 

Hong X, Zhang C, Wang F, Wu XT (2019) Large cytoplasmic vacuoles within notochordal nucleus pulposus cells: a possible regulator of intracellular pressure that shapes the cytoskeleton and controls proliferation. Cells Tissues Organs 206:9–15. https://doi.org/10.1159/000493258

Article  Google Scholar 

Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677. https://doi.org/10.1089/107632703768247368

Article  CAS 

Comments (0)

No login
gif