Burwell RG, Clark EM, Dangerfield PH, Moulton A (2016) Adolescent idiopathic scoliosis (AIS): a multifactorial cascade concept for pathogenesis and embryonic origin. Scoliosis Spinal Disord 11:1–7. https://doi.org/10.1186/s13013-016-0063-1
Pérez-Machado G, Berenguer-Pascual E, Bovea-Marco M et al (2020) From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 140:115563. https://doi.org/10.1016/j.bone.2020.115563
Article CAS PubMed Google Scholar
Fadzan M, Bettany-Saltikov J (2018) Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop J 11:1466–1489. https://doi.org/10.2174/1874325001711011466
Kikanloo SR, Tarpada SP, Cho W (2019) Etiology of adolescent idiopathic scoliosis: a literature review. Asian Spine J 13:519–526. https://doi.org/10.31616/asj.2018.0096
Article PubMed PubMed Central Google Scholar
Loncar-Dusek M, Pećina M, Prebeg Z (1991) A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Rel Res 270:278–282
Yim APY, Yeung HY, Hung VWY et al (2012) Abnormal skeletal growth patterns in adolescent idiopathic scoliosis—a longitudinal study until skeletal maturity. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e31825c036d
Agabegi SS, Kazemi N, Sturm PF, Mehlman CT (2015) Natural history of adolescent idiopathic scoliosis in skeletally mature patients: a critical review. J Am Acad Orthop Surg 23:714–723. https://doi.org/10.5435/JAAOS-D-14-00037
Thompson DW (1917) On growth and form. Cambridge University Press, Edinburgh
Farnum CE, Lee R, O’Hara K, Urban JPG (2002) Volume increase in growth plate chondrocytes during hypertrophy: the contribution of organic osmolytes. Bone 30:574–581. https://doi.org/10.1016/S8756-3282(01)00710-4
Article CAS PubMed Google Scholar
Villemure I, Stokes IAF (2009) Growth plate mechanics and mechanobiology: a survey of current understanding. J Biomech 42:1793–1803. https://doi.org/10.1016/j.jbiomech.2009.05.021.Growth
Article PubMed PubMed Central Google Scholar
Ponrartana S, Fisher CL, Aggabao PC et al (2016) Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis. Pediatr Radiol 46:1424–1429. https://doi.org/10.1007/s00247-016-3633-8
Brink RC, Schlösser TPC, Colo D et al (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine (Phila Pa 1976) 42:818–822. https://doi.org/10.1097/BRS.0000000000001919
Meir A, McNally DS, Fairbank JC et al (2008) The internal pressure and stress environment of the scoliotic intervertebral disc—a review. Proc Inst Mech Eng Part H J Eng Med 222:209–219. https://doi.org/10.1243/09544119JEIM303
Guo X, Chau WW, Chan YL, Cheng JCY (2003) Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. J Bone Joint Surg Ser B 85:1026–1031. https://doi.org/10.1302/0301-620X.85B7.14046
Hueter C (1862) Anatomische studien an den extremitätengelenken neugeborener und erwachsener. Arch Pathol Anat Physiol Klin Med 25:572–599. https://doi.org/10.1007/BF01879806
Volkmann R (1862) Chirurgische erfahrungeu über knocheuverbiegungen und knochenwachsthum. Arch Pathol Anat Physiol Klin Med 24:512–540
Mehlman C, Araghi A, Roy D (1997) Hyphenated history: the Hueter–Volkmann Law. Am J Orthop 26:798–800
Somerville EW (1952) Rotational lordosis; the development of single curve. J Bone Joint Surg Br 34b3:421. https://doi.org/10.1302/0301-620x.34b3.421
Roaf R (1966) The basic anatomy of scoliosis. J Bone Joint Surg Br 48:786–792. https://doi.org/10.1302/0301-620x.48b4.786
Article CAS PubMed Google Scholar
Jarvis JG, Ashman RB, Johgnston CE, Herring JA (1988) The posterior tether in scoliosis. Clin Orthop Rel Res 227:126–134
Deacon P, Flood BM, Dickson RA (1984) Idiopathic scoliosis in three dimensions. A radiographic and morphometric analysis. J Bone Joint Surg Ser B 66:509–512. https://doi.org/10.1302/0301-620x.66b4.6746683
Dickson RA, Lawton JO, Archer IA, Butt WP (1984) The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Ser B 66:8–15. https://doi.org/10.1302/0301-620x.66b1.6693483
Crijns TJ, Stadhouder A, Smit TH (2017) Restrained differential growth: the initiating event of adolescent idiopathic scoliosis? Spine (Phila Pa 1976) 42:E726–E732. https://doi.org/10.1097/BRS.0000000000001946
Millner PA, Dickson RA (1996) Idiopathic scoliosis: biomechanics and biology. Eur Spine J 5:362–373. https://doi.org/10.1007/BF00301963
Article CAS PubMed Google Scholar
Taylor JR (1975) Growth of human intervertebral discs and vertebral bodies. J Anat 120:49–68
CAS PubMed PubMed Central Google Scholar
Stücker R (2016) Die wachsende wirbelsäule: normale entwicklung und entwicklungsstörung. Orthopade 45:534–539. https://doi.org/10.1007/s00132-016-3277-2
De Reuver S, Costa L, Van Rheenen H et al (2022) Disc and vertebral body morphology from birth to adulthood. Spine (Phila Pa 1976) 47:E312–E318. https://doi.org/10.1097/BRS.0000000000004278
Mao SH, Jiang J, Sun X et al (2011) Timing of menarche in Chinese girls with and without adolescent idiopathic scoliosis: current results and review of the literature. Eur Spine J 20:260–265. https://doi.org/10.1007/s00586-010-1649-6
Cheung CSK, Lee WTK, Tse YK et al (2003) Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine (Phila Pa 1976) 28:2152–2157. https://doi.org/10.1097/01.BRS.0000084265.15201.D5
Bala KA, Bala MM (2023) Pubertal stage-dependent anthropometric variations in Turkish children with adolescent idiopathic scoliosis: an in-depth analysis. Med Sci Monit 29:1–8. https://doi.org/10.12659/msm.940864
Chen H, Schlösser TPC, Brink RC et al (2017) The height-width-depth ratios of the intervertebral discs and vertebral bodies in adolescent idiopathic scoliosis vs controls in a Chinese population. Sci Rep 7:1–7. https://doi.org/10.1038/srep46448
Emanuel KS, Peeters M, Holewijn RM et al (2015) Poroelastic behaviour of the degenerating human intervertebral disc: a ten-day study in a loaded disc culture system. Eur Cells Mater 29:330–341
Urban JPG, McMullin JF (1985) Swelling pressure of the intervertebral disc: influence of proteoglycan and collagen contents. Biorheology 22:145–157
Article CAS PubMed Google Scholar
Emanuel KS, van der Veen AJ, Rustenburg CME et al (2018) Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: a caprine in vitro study. J Biomech 70:10–15. https://doi.org/10.1016/j.jbiomech.2017.10.010
Vergroesen PPA, Van Der Veen AJ, Van Royen BJ et al (2014) Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 23:2359–2368. https://doi.org/10.1007/s00586-014-3450-4
Meir AR, Fairbank JCT, Jones DA et al (2007) High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis 2:1–16. https://doi.org/10.1186/1748-7161-2-4
Tanaka A (1986) A histopathological study on the intervertebral discs of idiopathic and paralytic scoliosis—abnormalities in transition from the notochordal nucleus to the fibrocartilaginous nucleus. Nihon Seikeigeka Gakkai Zasshi 60:1227–1238
Wang Y, Bai B, Hu Y et al (2021) Hydrostatic pressure modulates intervertebral disc cell survival and extracellular matrix homeostasis via regulating Hippo-YAP/TAZ Pathway. Stem Cells Int. https://doi.org/10.1155/2021/5626487
Article PubMed PubMed Central Google Scholar
Hong X, Zhang C, Wang F, Wu XT (2019) Large cytoplasmic vacuoles within notochordal nucleus pulposus cells: a possible regulator of intracellular pressure that shapes the cytoskeleton and controls proliferation. Cells Tissues Organs 206:9–15. https://doi.org/10.1159/000493258
Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677. https://doi.org/10.1089/107632703768247368
Comments (0)