Artificial light at night affects the daily profile of pulse pressure and protein expression in the thoracic aorta of rats

Molcan L, Sutovska H, Okuliarova M, Senko T, Krskova L, Zeman M. Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats. Life Sci. 2019;231:116568.

Article  CAS  PubMed  Google Scholar 

Rumanova VS, Okuliarova M, Molcan L, Sutovska H, Zeman M. Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats. Can J Physiol Pharmacol. 2019;97:863–71.

Article  CAS  PubMed  Google Scholar 

Okuliarova M, Dzirbikova Z, Rumanova VS, Foppen E, Kalsbeek A, Zeman M. Disrupted circadian control of hormonal rhythms and anticipatory thirst by dim light at night. Neuroendocrinology. 2022. https://doi.org/10.1159/000524235.

Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of circadian disruption on cardiovascular function and disease. Trend Endocrinol Metab. 2019;30:767–79.

Article  CAS  Google Scholar 

Szkiela M, Kusideł E, Makowiec-Dąbrowska T, Kaleta D. Night shift work-a risk factor for breast cancer. Int J Environ Res Public Health. 2020;17. https://doi.org/10.3390/ijerph17020659.

Lieberman HR, Agarwal S, Caldwell JA, Fulgoni VL. Demographics, sleep, and daily patterns of caffeine intake of shift workers in a nationally representative sample of the US adult population. Sleep. 2020;43:zsz240 https://doi.org/10.1093/sleep/zsz240.

Article  PubMed  Google Scholar 

Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, et al. The new world atlas of artificial night sky brightness. Sci Adv. 2016;2:e1600377.

Article  PubMed  PubMed Central  Google Scholar 

Obayashi K, Saeki K, Iwamoto J, Ikada Y, Kurumatani N. Association between light exposure at night and nighttime blood pressure in the elderly independent of nocturnal urinary melatonin excretion. Chronobiol Int. 2014;31:779–86.

Article  CAS  PubMed  Google Scholar 

Mitsui K, Saeki K, Tone N, Suzuki S, Takamiya S, Tai Y, et al. Short-wavelength light exposure at night and sleep disturbances accompanied by decreased melatonin secretion in real-life settings: a cross-sectional study of the HEIJO-KYO cohort. Sleep Med. 2022;90:192–8.

Article  PubMed  Google Scholar 

Obayashi K, Yamagami Y, Tatsumi S, Kurumatani N, Saeki K. Indoor light pollution and progression of carotid atherosclerosis: a longitudinal study of the HEIJO-KYO cohort. Environ Int. 2019;133:105184.

Article  PubMed  Google Scholar 

Alaasam VJ, Liu X, Niu Y, Habibian JS, Pieraut S, Ferguson BS, et al. Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird. Environ Pollut. 2021;282:117036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutovska H, Molcan L, Koprdova R, Piesova M, Mach M, Zeman M. Prenatal hypoxia increases blood pressure in male rat offspring and affects their response to artificial light at night. J Dev Orig Health Dis. 2021;12:587–94.

Article  CAS  PubMed  Google Scholar 

Chen S, Zhang H, Hou Q, Zhang Y, Qiao A. Multiscale modeling of vascular remodeling induced by wall shear stress. Front Physiol. 2022;12:808999 https://doi.org/10.3389/fphys.2021.808999.

Article  PubMed  PubMed Central  Google Scholar 

Nava E, Llorens S. The local regulation of vascular function: from an inside-outside to an outside-inside model. Front Physiol. 2019;10:729 https://doi.org/10.3389/fphys.2019.00729.

Article  PubMed  PubMed Central  Google Scholar 

Gross V, Milia AF, Plehm R, Inagami T, Luft FC. Long-term blood pressure telemetry in AT2 receptor-disrupted mice. J Hypertens. 2000;18:955–61.

Article  CAS  PubMed  Google Scholar 

Cavalli A, Lattion A-L, Hummler E, Nenniger M, Pedrazzini T, Aubert J-F, et al. Decreased blood pressure response in mice deficient of the α 1b -adrenergic receptor. Proc. Natl Acad. Sci. 1997;94:11589–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnan V, Ali S, Gonzales AL, Thakore P, Griffin CS, Yamasaki E, et al. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. Elife. 2022;11:e70278 https://doi.org/10.7554/eLife.70278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk D-J, et al. The Functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017;38:3–45.

Article  PubMed  Google Scholar 

Schofl C, Becker C, Prank K, von zur Muhlen A, Brabant G. Twenty-four-hour rhythms of plasma catecholamines and their relation to cardiovascular parameters in healthy young men. Eur J Endocrinol. 1997;137:675–83.

Grant AD, Wilsterman K, Smarr BL, Kriegsfeld LJ. Evidence for a coupled oscillator model of endocrine ultradian rhythms. J Biol Rhythms. 2018;33:475–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Svitok P, Molcan L, Stebelova K, Vesela A, Sedlackova N, Ujhazy E, et al. Prenatal hypoxia in rats increased blood pressure and sympathetic drive of the adult offspring. Hypertens Res. 2016;39:501–5.

Article  CAS  PubMed  Google Scholar 

Sutovska H, Miklovic M, Molcan L. Artificial light at night suppresses the expression of sarco/endoplasmic reticulum Ca 2+ ‐ATPase in the left ventricle of the heart in normotensive and hypertensive rats. Exp Physiol. 2021;106:1762–71.

Article  CAS  PubMed  Google Scholar 

Zuther P, Gorbey S, Lemmer B. Chronos-Fit 1.06. Chronos-Fit. 2009.

Molcan L. Time distributed data analysis by Cosinor.Online application. bioRxiv. 2019;805960.

Mutak A. Cosinor2: Extended Tools for Cosinor Analysis of Rhythms. R Package Version 0.2.1. [Internet]. 2018 [cited 2023 May 15]. Available from: https://CRAN.R-project.org/package=cosinor2.

Isobe S, Ohashi N, Ishigaki S, Tsuji T, Sakao Y, Kato A, et al. Augmented circadian rhythm of the intrarenal renin–angiotensin systems in anti-thymocyte serum nephritis rats. Hypertens Res. 2016;39:312–20.

Article  CAS  PubMed  Google Scholar 

Naito Y, Tsujino T, Matsumoto M, Okuda S, Sakoda T, Ohyanagi M, et al. The mechanism of distinct diurnal variations of renin-angiotensin system in aorta and heart of spontaneously hypertensive rats. Clin Exp Hypertens. 2009;31:625–38.

Article  CAS  PubMed  Google Scholar 

Pati P, Fulton DJR, Bagi Z, Chen F, Wang Y, Kitchens J, et al. Low-salt diet and circadian dysfunction synergize to induce angiotensin II–dependent hypertension in mice. Hypertension. 2016;67:661–8.

Article  CAS  PubMed  Google Scholar 

Fonken LK, Aubrecht TG, Meléndez-Fernández OH, Weil ZM, Nelson RJ. Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms. 2013;28:262–71.

Article  PubMed  PubMed Central  Google Scholar 

Petrie CJ, Voors AA, van Veldhuisen DJ. Low pulse pressure is an independent predictor of mortality and morbidity in non ischaemic, but not in ischaemic advanced heart failure patients. Int J Cardiol. 2009;131:336–44.

Article  PubMed  Google Scholar 

Depres-Brummer P, Levi F, Metzger G, Touitou Y. Light-induced suppression of the rat circadian system. Am J Physiol Regul Integr Comp Physiol. 1995;268:R1111–6.

Article  CAS  Google Scholar 

Molcan L, Teplan M, Vesela A, Zeman M. The long-term effects of phase advance shifts of photoperiod on cardiovascular parameters as measured by radiotelemetry in rats. Physiol Meas. 2013;34:1623–32.

Article  CAS  PubMed  Google Scholar 

Vosko AM, Colwell CS, Avidan AY. Jet lag syndrome: circadian organization, pathophysiology, and management strategies. Nat Sci Sleep. 2010;2:187–98.

Eastman CI, Mistlberger RE, Rechtschaffen A. Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav. 1984;32:357–68.

Article  CAS  PubMed  Google Scholar 

Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature. 1999;400:169–73.

Article  CAS  PubMed  Google Scholar 

Vitaterna MH, King DP, Chang A-M, Kornhauser JM, Lowrey PL, McDonald JD, et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 1994;264:719–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ting IJ, Psomas A, Skene DJ, Van der Veen DR. Reduced glucose concentration enhances ultradian rhythms in Pdcd5 promoter activity in vitro. Front Physiol. 2023;14:1244497 https://doi.org/10.3389/fphys.2023.1244497.

Article  PubMed  PubMed Central  Google Scholar 

Di Daniele N, Tesauro M, Mascali A, Rovella V, Scuteri A. Lower heart rate variability is associated with lower pulse pressure amplification: role of obesity. Pulse. 2017;5:99–105.

Article  PubMed  PubMed Central  Google Scholar 

Chorepsima S, Eleftheriadou I, Tentolouris A, Moyssakis I, Protogerou A, Kokkinos A, et al. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus. BMC Endocr Disord. 2017;17:27.

Article  PubMed  PubMed Central  Google Scholar 

Hayman DM, Xiao Y, Yao Q, Jiang Z, Lindsey ML, Han H-C. Alterations in pulse pressure affect artery function. Cell Mol Bioeng. 2012;5:474–87.

Article  PubMed  Google Scholar 

Sezer M, Atici A, Coskun I, Cizgici Y, Ozcan A, Umman B, et al. Reducing aortic barotrauma and vascular extracellular matrix degradation by pacemaker‐mediated QRS widening. J Am Heart Assoc. 2020;9:e014804 https://doi.org/10.1161/JAHA.119.014804.

Article  CAS  PubMed 

Comments (0)

No login
gif