Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806
Article CAS PubMed Google Scholar
Armoundas AA, Wu R, Juang G, Marban E, Tomaselli GF (2001) Electrical and structural remodeling of the failing ventricle. Pharmacol Ther 92:213–230
Article CAS PubMed Google Scholar
Iyer V, Heller V, Armoundas AA (1985) Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: Implications for electrical instability. J Appl Physiol 2012(112):944–955
Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’Rourke B, Kass DA, Marban E, Shorofsky SR, Tomaselli GF, William BC (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292:H1607–H1618
Article CAS PubMed Google Scholar
Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53
Article CAS PubMed PubMed Central Google Scholar
Katz AM (2011) Physiology of the Heart, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins Health
Akar FG, Wu RC, Juang GJ, Tian Y, Burysek M, Disilvestre D, Xiong W, Armoundas AA, Tomaselli GF (2005) Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. Am J Physiol Heart Circ Physiol 288:H2887–H2896
Article CAS PubMed Google Scholar
Rose J, Armoundas AA, Tian Y, DiSilvestre D, Burysek M, Halperin V, O’Rourke B, Kass DA, Marban E, Tomaselli GF (2005) Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. Am J Physiol Heart Circ Physiol 288:H2077–H2087
Article CAS PubMed Google Scholar
Akar FG, Wu RC, Deschenes I, Armoundas AA, Piacentino V 3rd, Houser SR, Tomaselli GF (2004) Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol Heart Circ Physiol 286:H602–H609
Article CAS PubMed Google Scholar
Wood EH, Heppner RL, Weidmann S (1969) Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res 24:409–45
Article CAS PubMed Google Scholar
Roger S, Schneider R, Rudic B, Liebe V, Stach K, Schimpf R, Borggrefe M, Kuschyk J (2014) Cardiac contractility modulation: first experience in heart failure patients with reduced ejection fraction and permanent atrial fibrillation. Europace 16(8):1205–1209. https://doi.org/10.1093/europace/euu050
Kuschyk J, Kloppe A, Schmidt-Schweda S, Bonnemeier H, Rousso B, Roger S (2017) Cardiac contractility modulation: a technical guide for device implantation. Rev Cardiovasc Med 18:1–13
Merchant FM, Sayadi O, Sohn K, Weiss EH, Puppala D, Doddamani R, Singh JP, Heist EK, Owen C, Kulkarni K, Armoundas AA (2020) Real-time closed-loop suppression of repolarization alternans reduces arrhythmia susceptibility in vivo. Circ Arrhythm Electrophysiol 13:e008186
Article CAS PubMed PubMed Central Google Scholar
Sayadi O, Puppala D, Ishaque N, Doddamani R, Merchant FM, Barrett C, Singh JP, Heist EK, Mela T, Martinez JP, Laguna P, Armoundas AA (2014) A novel method to capture the onset of dynamic electrocardiographic ischemic changes and its implications to arrhythmia susceptibility. J Am Heart Assoc 3:e001055
Article PubMed PubMed Central Google Scholar
Merchant FM, Sayadi O, Puppala D, Moazzami K, Heller V, Armoundas AA (2014) A translational approach to probe the proarrhythmic potential of cardiac alternans: a reversible overture to arrhythmogenesis? Am J Physiol Heart Circ Physiol 306:H465–H474
Article CAS PubMed Google Scholar
Armoundas AA, Weiss EH, Sayadi O, Laferriere S, Sajja N, Mela T, Singh JP, Barrett CD, Kevin Heist E, Merchant FM (2013) A novel pacing method to suppress repolarization alternans in vivo: implications for arrhythmia prevention. Heart Rhythm 10:564–572
Burkhoff D, Shemer I, Felzen B, Shimizu J, Mika Y, Dickstein M, Prutchi D, Darvish N, Ben-Haim SA (2001) Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev 6:27–34
Article CAS PubMed Google Scholar
Sabbah HN, Haddad W, Mika Y, Nass O, Aviv R, Sharov VG, Maltsev V, Felzen B, Undrovinas AI, Goldstein S, Darvish N, Ben-Haim SA (2001) Cardiac contractility modulation with the impulse dynamics signal: Studies in dogs with chronic heart failure. Heart Fail Rev 6:45–53
Article CAS PubMed Google Scholar
Mohri S, He KL, Dickstein M, Mika Y, Shimizu J, Shemer I, Yi GH, Wang J, Ben-Haim S, Burkhoff D (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282:H1642–H1647
Article CAS PubMed Google Scholar
Butter C, Wellnhofer E, Schlegl M, Winbeck G, Fleck E, Sabbah HN (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142. https://doi.org/10.1016/j.cardfail.2006.11.00421
Goliasch G, Khorsand A, Schutz M, Karanikas G, Khazen C, Sochor H, Schmidinger H, Wolzt M, Graf S (2012) The effect of device-based cardiac contractility modulation therapy on myocardial efficiency and oxidative metabolism in patients with heart failure. Eur J Nucl Med Mol Imaging 39(3):408–415. https://doi.org/10.1007/s00259-011-1977-8
Article CAS PubMed Google Scholar
Tschope C, Kherad B, Klein O, Lipp A, Blaschke F, Gutterman D, Burkhoff D, Hamdani N, Spillmann F, Van Linthout S (2019) Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail 21:14–22
Kloppe A, Mijic D, Schiedat F, Bogossian H, Mugge A, Rousso B, Lemke B (2016) A randomized comparison of 5 versus 12 hours per day of cardiac contractility modulation treatment for heart failure patients: A preliminary report. Cardiol J 23(1):114–119. https://doi.org/10.5603/CJ.a2015.0073
Pappone C, Rosanio S, Burkhoff D, Mika Y, Vicedomini G, Augello G, Shemer I, Prutchi D, Haddad W, Aviv R, Snir Y, Kronzon I, Alfieri O, Ben-Haim SA (2002) Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 90:1307–1313
Pappone C, Augello G, Rosanio S, Vicedomini G, Santinelli V, Romano M, Agricola E, Maggi F, Buchmayr G, Moretti G, Mika Y, Ben-Haim SA, Wolzt M, Stix G, Schmidinger H (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427. https://doi.org/10.1046/j.1540-8167.2004.03580.x
Zhang Q, Chan YS, Liang YJ, Fang F, Lam YY, Chan CP, Lee AP, Chan KC, Wu EB, Yu CM (2013) Comparison of left ventricular reverse remodeling induced by cardiac contractility modulation and cardiac resynchronization therapy in heart failure patients with different QRS durations. Int J Cardiol 167(3):889–893. https://doi.org/10.1016/j.ijcard.2012.01.066
Kuschyk J, Nagele H, Heinz-Kuck K, Butter C, Lawo T, Wietholt D, Roeger S, Gutterman D, Burkhoff D, Rousso B, Borggrefe M (2019) Cardiac contractility modulation treatment in patients with symptomatic heart failure despite optimal medical therapy and cardiac resynchronization therapy (CRT). Int J Cardiol 277:173–177. https://doi.org/10.1016/j.ijcard.2018.10.086
Yucel G, Fastner C, Hetjens S, Toepel M, Schmiel G, Yazdani B, Husain-Syed F, Liebe V, Rudic B, Akin I, Borggrefe M, Kuschyk J (2022) Impact of baseline left ventricular ejection fraction on long-term outcomes in cardiac contractility modulation therapy. Pacing Clin Electrophysiol 45(5):639–648. https://doi.org/10.1111/pace.14478
Yu CM, Chan JY, Zhang Q, Yip GW, Lam YY, Chan A, Burkhoff D, Lee PW, Fung JW (2009) Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging 2(12):1341–1349. https://doi.org/10.1016/j.jcmg.2009.07.011
Anker SD, Borggrefe M, Neuser H, Ohlow MA, Roger S, Goette A, Remppis BA, Kuck KH, Najarian KB, Gutterman DD, Rousso B, Burkhoff D, Hasenfuss G (2019) Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction. Eur J Heart Fail 21(9):1103–1113. https://doi.org/10.1002/ejhf.1374
Kuschyk J, Falk P, Demming T, Marx O, Morley D, Rao I, Burkhoff D (2021) Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system. Eur J Heart Fail 23(7):1160–1169. https://doi.org/10.1002/ejhf.2202
Article CAS PubMed Google Scholar
Kuschyk J, Roeger S, Schneider R, Streitner F, Stach K, Rudic B, Weiss C, Schimpf R, Papavasilliu T, Rousso B, Burkhoff D, Borggrefe M (2015) Efficacy and survival in patients with cardiac contractility modulation: Long-term single center experience in 81 patients. Int J Cardiol 183:76–81. https://doi.org/10.1016/j.ijcard.2014.12.178
Liu M, Fang F, Luo XX, Shlomo BH, Burkhoff D, Chan JY, Chan CP, Cheung L, Rousso B, Gutterman D, Yu CM (2016) Improvement of long-term survival by cardiac contractility modulation in heart failure patients: A case-control study. Int J Cardiol 206:122–126. https://doi.org/10.1016/j.ijcard.2016.01.071
Comments (0)